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HOOFDSTUK 1

Voorwoord

Na viereneenhalf jaar is het eindresultaat daar! Een proefschrift dat de naam
draagt van één auteur, maar dat het werk is van velen. De afgelopen jaren zijn
intensief en enerverend geweest. |k heb mooie herinneringen aan de goede en in-
spirerende samenwerkingen die hebben bijgedragen aan de totstandkoming van dit
proefschrift. Zonder de illusie te koesteren uitputtend te zijn, wil ik graag gebruik
maken van de gelegenheid een aantal mensen te bedanken voor hun waardevolle
bijdrage.

Bart, onze samenwerking begon tijdens mijn afstuderen. Toen jij, tijdens het
afronden van mijn masterscriptie, vroeg of ik weleens gedacht had om te promo-
veren, was mijn eerste gedachte: “Lijkt me niets voor mij". Uiteraard heb ik me
weleens afgevraagd waar ik aan begonnen ben, maar spijt heb ik niet gehad. Be-
dankt voor deze geweldige kans, die je mij geboden hebt. Naast je onmiskenbare
bijdrage aan dit proefschrift, ben jij een baken in het commerciéle bestaan dat ik
naast mijn promoveren heb. Jij hebt mij daarin op weg geholpen naar professionele
volwassenheid.

Erwin, zonder twijfel ben jij een van de meest enthousiaste en gedreven men-
sen die ik ken. Daarnaast is jouw talent om een ‘commercieel sausje’ over een
wetenschappelijke tekst te gieten onovertroffen. Je hebt mij geleerd hoe je weten-
schappelijke teksten beter verkoopt en hebt daarbij van mij een betere schrijver
gemaakt. Je vertel- en moppentaptalenten kenmerken je daarnaast als iemand die
vol in het leven staat.

Richard, nadat ik in het eerste jaar vooral mijn best deed mijn kweekvijver met
potentiéle onderzoeksonderwerpen zo vol mogelijk te krijgen, heb jij mij op het
juiste moment laten focussen. Een uitspraak van jou die ik nooit zal vergeten is
dat “geen keuze ook een keuze is". Jouw oog voor het constateren van incoherente
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Voorwoord

verbanden heeft mij geleerd de grote lijnen en de argumentatie in artikelen en in
dit proefschrift zorgvuldiger en scherper neer te zetten.

Uiteraard een speciaal woord van dank voor de commissieleden. Sven de Vries,
without knowing at the time, you were already involved with my PhD dissertation
when supervising my master's thesis that later turned out to be the foundation
for Chapter 8 of this dissertation. Johann Hurink, onze discussies over wiskundige
probleemformuleringen hebben geholpen de modellen beter te kiezen en de keuzes
gedegen te motiveren. Ik bewonder je kwaliteiten om artikelen te structureren en
logisch op te bouwen, welke zeker geholpen hebben ons ‘zelfrooster-onderzoek’
(hoofdstuk 9 van dit proefschrift) goed op te schrijven. Ton Mouthaan, Jos van
Hillegersberg, Frits van Merode, Gerrit Timmer en Greet Vanden Berghe: ik voel
me vereerd dat jullie plaatsnemen in mijn promotiecommissie.

Een bijzonder woord van dank gaat uit naar mijn collega’s van CHOIR van de
Universiteit Twente.

Peter Vanberkel, thanks for setting an excellent example for the CHOIR PhD's
that followed you. For me, you are the example of a devoted scientist.

Maartje Zonderland, ik bewonder je uitzonderlijke talent om zwakheden in de
praktijk en theorie op te merken en hoe je vanuit de theorie in de vaak weerbarstige
ziekenhuispraktijk verbeteringen weet te realiseren.

Nikky, een jaar na het afronden van jouw proefschrift is onze voortdurende
strijd om het hardste lachsalvo op te wekken tijdens een presentatie nog steeds
onbeslist. Nu nodig ik jou uit voor een volgende ronde.

Peter Hulshof, dat je ondanks je switch naar een leven als strategieconsultant,
halverwege je promotie, in staat bent gebleken je promotie af te ronden, vind ik
knap.

Theresia, dat we nooit samen aan een artikel gewerkt hebben is ergens vreemd,
maar wat niet is kan nog komen. Onze samenwerking was bij tijden intensief, met
name in het eerste jaar, bij het volgen van LNMB vakken. Ook in de afrondende
fase van onze promoties was de samenwerking waardevol. De vrijdagen waren bij
tijden misschien iets te gezellig, maar zullen mij zeker bijblijven.

Aleida, de gesprekken in de auto samen op weg naar Fryslan ga ik missen. Je
ontegenzeqggelijke talent om prijzen in de wacht te slepen vind ik bewonderens-
waardig.

Maartje van de Vrugt, veel hebben wij niet samengewerkt, maar gezellig was
het altijd wel op vrijdagen en congressen. Je werk laat een wiskundig talent zien,
wat buitengewoon verenigd is met het zijn van een sociaal persoon.

Nardo, onze samenwerking was kort. Desondanks constateer ik bij jou een
gefocusedheid die ik knap vind.

De grote hoeveelheid co-auteurs waarmee is samengewerkt, onderstrepen de
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invloed van samenwerking op de totstandkoming van dit proefschrift. De personen
die als co-auteur hebben bijgedragen aan één of meerdere hoofdstukken uit dit
proefschrift ben ik ontzettend dankbaar. Erwin, Bart, Leo Berrevoets, Bart Berden
en Windi Winasti, met jullie hulp is hoofdstuk 3 tot stand gekomen. Na een flinke
dataverzamelinspanning en meerdere ritjes van en naar Nijmegen hebben we een
mooi onderzoek neergezet. Richard en Jan-Kees, samen hebben we laten zien dat
stochastische operations research prima gebruikt kan worden om deterministische
problemen op te lossen. Sophie, uit jouw masterscriptie is hoofdstuk 5 voortge-
komen. lk dank jou, Gerhard en Tim voor het tot stand komen van dit hoofdstuk
en het bijbehorende artikel. Frédérique, uit jouw masterscriptie is hoofdstuk 6
voortgekomen. In die tijd deelden wij een kamer, wat mijn proefschrift zeker ook
veel goeds heeft gebracht. Ik dank jou, Erwin, Gerhard en Bart voor het tot stand
komen van dit hoofdstuk en het bijbehorende artikel. Sven en Bart, dankzij jullie
begeleiding tijdens het schrijven van mijn eigen masterscriptie bleek deze scrip-
tie voldoende voedingsbodem voor zowel een mooi artikel als hoofdstuk 7 van dit
proefschrift. Suzanne, het pionierswerk voor hoofdstuk 8 heb jij voor je rekening
genomen. Dank hiervoor en ook voor het zijn van een gezellige kamergenoot.
Uit jouw masterscriptie is met hulp van Johann en Marco uiteindelijk een mooi
hoofdstuk en artikel voortgekomen.

Mijn collega’s bij ORTEC dank ik voor de gezellige tijd die ik heb gehad.
Hierbij bedank ik in het bijzonder mijn leidinggevenden Merlijn en Monique voor
de vrijheid die jullie mij hebben gegeven om mijn commerciéle werkzaamheden en
promotieonderzoek op elkaar af te stemmen. Dat dit onder jullie hoede als vanzelf-
sprekend verliep, is niet vanzelfsprekend. Merlijn, de ontspannende avondijes pool
heb ik zeer gewaardeerd; moge er nog vele volgen. Monique, direct en indirect
heb jij een belangrijke rol gespeeld bij de totstandkoming van een groot deel van
mijn proefschrift. Jouw kritische blik op stijl en woordkeuze is de leesbaarheid van
dit proefschrift zeker ten goede gekomen.

Ten slotte, maar zeker niet ten minste, dank ik mijn vrienden, ouders, broers en
grootouders voor de mentale ondersteuning. De ontspannende avonden en week-
endjes hebben mij geholpen te blijven beseffen dat het leven van een promovendus
niet alleen hoeft te bestaan uit het schrijven van een proefschrift. Harmen en Jan,
bedankt dat jullie mij als paranimfen ter zijde staan.

Lieve Sanne. Ik kan vele redenen noemen om je te bedanken, maar het be-
langrijkste is dat je er gewoon altijd voor me bent.

Egbert
Gouda, oktober 2013
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CHAPTER 2

Research Relevance and Outline

2.1 Introduction

In many organizations, particularly in the service industry, personnel wages ac-
count for the major part of the operational cost [185]. Efficient personnel scheduling
may thus significantly reduce costs. This particularly holds for the healthcare sec-
tor, where expenditures have been rising, and are expected to rise even further due
to, among others, the aging population. The aging population spurs the need for
more healthcare personnel, while the relative size of the working population is de-
creasing, see the population pyramid of the Netherlands in Figure 2.1 and the old
age dependency ratio for the coming decades in Figure 2.2. In the Netherlands,
about 68% of the healthcare expenses are being spend on personnel wages [112],
and total healthcare expenses are expected to grow from 12% of GDP in 2012 (i.e.,
92.7 billion euros) to 19-31% in 2040 [84, 85].

In the 21st century, organizations face a more heterogeneous workforce than in
the previous century, which requires careful consideration of requests and prefer-
ences of individual employees. From our own experience in the healthcare sector, a
lot of effort is required to develop efficient personnel schedules. However, typically
when the work schedules are provided to the personnel, staff members immediately
start exchanging shifts. This indicates that individual personnel preferences are
insufficiently taken into account during the personnel scheduling.

On the one hand, the highly heterogeneous workforce is a result of employee
preferences to work part-time or to have fixed days off. Represented by labor
unions, employees negotiate with organizations about the collective labor agree-
ments, which necessitate that companies provide different contracts, such as full-
time and part-time. Moreover, personnel nowadays is more diverse with respect
to socio-demographic aspects such as age, gender, and race, which also plays an
important role in employee management [52]. On the other hand, organizations try
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Figure 2.1: Population pyramid of the Netherlands [83]

to schedule personnel to match demand as efficiently as possible. This requires
flexibility in the scheduling of personnel, particularly when demand fluctuates.

In this dissertation, we address several personnel planning and scheduling
challenges that explicitly address preferences and characteristics of individual
employees. We design algorithmic support for these challenges. The algorithms
help to cope with the diversity between employees as well as improve cost con-
trol. The algorithms may help organizations to increase job satisfaction and profit
margins.

The outline of this chapter is as follows: Sections 2.2 and 2.3 give a general
introduction in the research field and research methods, respectively. Section 2.2
introduces the research topic of this dissertation, Section 2.4 describes the re-
search environment and Section 2.5 presents an outline of the dissertation.

2.2 Personnel preferences in personnel planning

and scheduling
We experience a gap between the need in practice and the existing theory on
personnel planning and scheduling. This gap is also recognized by a literature

study that analyzes the implementation success of personnel scheduling support
in practice [164]. Especially regarding personnel preferences, the recent literature

2
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Figure 2.2: Ratio of the population aged 20-66 over the population aged 67+ [83]

review by Bergh et al. 2013 [255] states: “there are still some great opportunities
in finding algorithms that efficiently cope with employee preferences”.

The goal of this dissertation is to investigate, design and develop personnel
planning and scheduling algorithms that in particular focus on personnel prefer-
ences on various levels of planning. Thereby, this dissertation contributes to bridg-
ing the experienced gap between practice and theory. Moreover, the algorithms
proposed and designed in this dissertations are based on practical applications,
and resulted in a number of practical implementations.

In order to cope with personnel preferences in personnel planning and sche-
duling, many human planners decompose scheduling problems into subproblems.
For example, when creating work schedules planners often start by constructing
weekend schedules or days off schedules since employee preferences predomi-
nantly focus on weekends and days off. Another way of coping with employee
preferences is self-scheduling. In self-scheduling employees propose their own
schedules, catered to their own preferences.

With respect to personnel planning, we propose a method that distributes work-
force capacity on an individual level over the year. Allowing employees to work
more in one week and less in another week is also known as annualized hours.
The proposed method considers individual preferences on weekly working hours
(for details, see Chapters 4 and Chapter 5). In addition, we propose methods that
support the natural planning process by offering decomposition algorithms, such
as a days off scheduling and a weekend shift scheduling algorithm (Chapter 6 and

3
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Chapter 7). Furthermore, we investigate the potential of integrating two impor-
tant personnel scheduling decisions, so-called shift scheduling and shift rostering,
thereby aiming to better cope with personnel preferences and characteristics in the
generated work schedules (Chapter 8). Finally, some organizations allow employ-
ees to propose their own preferred schedule, which is known as self-scheduling.
We propose a method that supports the planner to create feasible work schedules
from the individual work schedules proposed by the employees (Chapter 9).

2.3 The role of Operations Research

Operations Research is a discipline in applied mathematics that develops and ap-
plies quantitative techniques to support decision making in business processes.
Operations Research originates from the Second World War, where military plan-
ners used it to support decision making. Since then, Operations Research analyzes
real world optimization problems in various contexts, such as transportation, supply
chain management, telecommunications, and personnel planning and scheduling.
Typically, an operations research application starts from a real-life business chal-
lenge. This business challenge is translated into a mathematical problem and
subsequently a mathematical model is designed to solve this. The mathematical
solution obtained from the model is then translated into a practical answer to the
business challenge.

Tailoring operations research techniques to practical applications can be a
real challenge. Nevertheless, the research field of operations research is not
only concerned with applications, but also involves the development of advanced
mathematics. A famous open mathematical problem is the so-called P = NP
conjecture. This conjecture is one out of 7 mathematical problems that is awarded
a million dollar prize by the Clay Mathematics Institute to the first person that
solves it [114].

In this dissertation operations research techniques are developed for and ap-
plied to the field of personnel planning and scheduling. Operations Research
for personnel planning and scheduling started in the 1950s, with Leslie Edie's
“Traffic Delays at Toll Booths” in 1954 [116], and the response, “A Comment on
Edie’s ‘Traffic Delays at Toll Booths’ *, to this by George Dantzig in 1954 [106].
Since these, a significant amount of operations research literature is devoted to
personnel rostering, which stems from the over 1100 references listed by various
comprehensive literature reviews [71, 123, 255].

Most of the early literature (1950s-1970s) focuses on either finding feasi-
ble shift rosters under a set of (hard) constraints or minimizing the number of

4
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employees needed to cover a given set of shifts. In other words, they focus on
employers’ needs. More recent literature (1980s-2000s) additionally considers
employee preferences. The models in this literature try to balance or align the
goals of employers and employees. Literature reviews [71, 86, 164] show that there
has been a strong focus on nurse rostering problems. Nurse rostering character-
izes itself by shift being scheduled 24/7 and taking into account many personnel
preferences, e.g., about which weekends employees prefer not to work, and days
off requests.

2.4 Research environment

Real-life applications are at the basis of the research in this dissertation. We ad-
dress several personnel planning and scheduling applications from various orga-
nizations. The research in this dissertation is performed in collaboration between
ORTEC and the research group CHOIR of the University of Twente, of which we
give brief descriptions in this section. The shared interest in efficient personnel
scheduling in healthcare is a basis for the collaboration between ORTEC and
CHOIR, of which this dissertation is a result.

ORTEC - www.ortec.com

ORTEC is a Dutch software supplier and consulting firm that offers off-the-shelf
software solutions as well as consulting services for a wide range of business op-
timization problems. ORTEC offers software and consulting services to increase
service quality in supply chains, improve revenues and profit margin via yield
management, and create better working conditions and higher levels of job sat-
isfaction by better employee scheduling [200]. ORTEC is a multinational with
global presence, operating in various industries; one of these is healthcare. In the
Netherlands, where this research is based, ORTEC is market leader in workforce
scheduling.

CHOIR - www.utwente.nl/choir/en/

CHOIR (Center for Healthcare Operations Improvement and Research) is a re-
search group of the University of Twente, the Netherlands. CHOIR aims to im-
prove healthcare operations by developing tailored operations research models for
healthcare optimization problems from practice [89]. Within this research area,
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CHOIR also addresses employee scheduling problems in healthcare. The author
participates in CHOIR’s research on this topic.

2.5 Outline of the dissertation

This dissertation is organized into nine chapters, starting with this introduction.

Chapter 3 provides a terminology that is used throughout this dissertation.
Furthermore, it addresses the personnel preferences and characteristics consid-
ered in the literature and discusses how these preferences and characteristics are
typically incorporated in scheduling algorithms.

Chapter 4 and Chapter 5 study annualized hours applications. Annualized
hours allow organizations to measure working time per year, instead of per month
or per week, relaxing the restriction for employees to work the same number of
hours every week. Chapter 4 proposes a mathematical programming formulation
that allows to flexibly model various personnel contract types, and Chapter 5
proposes a Cross-Entropy implementation to determine a cost-efficient workforce.
The Cross-Entropy implementation is designed to provide high-quality solutions
in short computation times, which is attractive from a user point of view.

Chapter 6 and Chapter 7 both apply a two-phase decomposition approach to
personnel scheduling applications.

The decomposition approach in Chapter 6 first creates a days off schedule,
indicating working days and days off for each employee. The second phase as-
signs shifts to the working days. Hence, this decomposition specifically addresses
constraints and preferences regarding days off. The decomposition is applied to
public benchmark instances.

Chapter 7 proposes a decomposition approach that first schedules weekend
shifts, and secondly assigns weekday shifts. This decomposition is motivated by
our experience that in many settings employees’ shift preferences predominantly
focus on the weekends, since many social activities happen during weekends. Since
specifically scheduling weekend shifts has not been studied before, we introduce a
problem specific heuristic for this. We demonstrate our decomposition on generated
and real-life instances.

In Chapter 8, we discuss an approach that integrates two different personnel
scheduling decisions: shift scheduling and shift rostering. With this approach
personnel preferences are already considered in shift scheduling, the phase that
determines when shifts should start and end. For this approach two formulations
are compared and solved. Especially our Branch-and-Price formulation is de-
signed to be flexible with regard to scheduling specific shifts for specific personnel

6
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members.

In Chapter 9, a self-scheduling application is addressed. In self-scheduling,
employees propose their own schedules to match a staffing demand specified by
the employer. Since these individually composed schedules often do not perfectly
match with the specified demand, a planner or manager has to adapt the schedules.
We present an approach that aims to divide the burden of shift reassignments 'fair’
among employees. We discuss computational results and indicate how various
model parameters influence scheduling performance indicators.

Chapter 10 concludes this dissertation with discussion and outlook for future
research.






CHAPTER 3

Terminology and Literature Survey

3.1 Introduction

Preferences and characteristics of individual employees should be carefully con-
sidered in personnel planning and scheduling, as motivated in Chapter 2. In this
chapter, we review and discuss how preferences and characteristics of individual
employees are handled in the literature. In addition, since in the literature many
synonyms are used for the same planning and scheduling decisions, this chapter
introduces the terminology that is used throughout this dissertation.

In [255], over 300 literature references on personnel planning and scheduling
from 2004 and later are categorized according to, among others, contract types,
scheduling constraints and the modeling techniques being used. In this chapter, we
review these 300 literature references and highlight the literature that considers
characteristics of individual employees, i.e., uses constraints or objectives for which
parameter values can be set for individual employees. For the literature from the
period before 2004, the reader is referred to the comprehensive reviews in [71, 123].

In the literature review, we consider personnel scheduling applications in which
employees are assigned to ‘shifts’. Note that the terminology we introduce is not
restricted to this constraint. A shift is defined as a combination of consecutive work
activities and breaks on scheduled moments in time. Such personnel scheduling
applications are for example found in healthcare and security services. We exclude
industries for which mathematical problem formulations are much different, such as
cyclical scheduling in manufacturing settings. Crew pairing and rostering, which
is typical in transportation settings, and task assignment, which aims to optimally
assign tasks to a set of scheduled employees, are excluded as well.

This chapter is structured as follows. Section 3.2 introduces our terminology
and Section 3.3 discusses the various personnel preferences and characteristics
that are considered in the literature. Section 3.4 discusses how these preferences

9
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Personnel planning >

Staffing
Annualized workforce allocation

C Offline personnel scheduling >

Shift scheduling
Cyclic scheduling
Days off scheduling
Weekend shift rostering
Shift rostering
Self-scheduling

C Online personnel scheduling >

Figure 3.1: Personnel planning and scheduling terminology

A

and characteristics are modeled, and conclusions and discussion are presented in
Section 3.5.

3.2 Terminology

This section proposes a terminology for personnel planning and scheduling deci-
sions, which is used throughout this dissertation. We defined our terminology by
evaluating the terminology from various personnel planning and scheduling litera-
ture reviews and cateqorization papers [15, 29, 53, 71, 86, 98, 109, 117, 123, 124,
139, 152, 157, 164, 215, 216, 220, 236, 239, 247, 255].

In Sections 3.2.1-3.2.3, we discuss the various personnel planning and sche-
duling decisions included in our terminology. In this discussion, we also address
the terminology used in the literature, were we will see that in the literature,
many synonyms are used for the same scheduling decision. The terminology is
schematically summarized in Figure 3.1.
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3.2 Terminology

3.2.1 Personnel planning

Personnel planning concerns decision making for which workforce capacity and
demand are known on an aggregated level, but where workforce capacity is still
flexible to a certain extent. We divide personnel planning decisions into two
categories: Staffing and Capacity allocation. Table 3.1 provides an overview of
the literature synonyms for personnel planning decisions.

Table 3.1: Synonyms for personnel planning decisions used in literature reviews

Planning level Decision

Staffing Manpower planning [53]
Staffing [71, 150, 164]
Total manpower requirements [247]

Capacity allocation  Annualized hours [15, 98]
Annualizing hours [98]
Flexiyear [15]

Staffing Staffing decisions consider the composition of a workforce. Demand is
given on an aggregated level of, e.g., a week or a month for a planning horizon of,
e.g., a year. To match this demand, staffing considers skill-mix decisions, such as
which skills should to be hired or trained employees have, and contract-mix deci-
sions addressing hiring and firing decisions. Staffing decisions may both consider
specific employees or anonymous employees.

Annualized workforce allocation Annualized workforce allocation considers the
distribution of available workforce capacity over some time horizon of typically
a year, where demand again is given on an aggregated level. An example of
this is the application of annualized hours. Annualized hours, as used in labor
legislation in, for example, Britain [223], France [138], Switzerland [148], and the
Netherlands [256], allow organizations to measure working time per year, instead
of per month or per week. This enables organizations to let employees work
more hours in some periods, and less in others. In this dissertation, annualized
hours applications are studied in Chapter 4 and Chapter 5. In Chapter 4, we
present a literature review of both the staffing and the annualized hours literature.
The staffing and annualized hours literature that considers preferences or specific
characteristics of individual employees are discussed in the literature review of
the current chapter as well.

1



Terminology and Literature Survey

3.2.2 Offline personnel scheduling

For offline personnel scheduling, workforce capacity and demand are given. Work-
force capacity is described by a set of employees, their skills and their working
hours. Demand is specified by ‘staffing levels’, expressing for example that “be-
tween 7:30 AM and 9:00 AM, two senior nurses should be available on the South
Ward". Personnel scheduling involves creating work schedules by specifying days
and time intervals during which personnel is required to work. For this, person-
nel scheduling considers different, but interrelated, scheduling decisions. These
scheduling decisions include: Shift scheduling, Days off scheduling, Cyclical sche-
duling, Weekend shift rostering, Shift rostering and Self-scheduling. We discuss
these scheduling decisions subsequently.

Note that the scheduling decisions, Cyclical scheduling, Days off scheduling
and Weekend shift rostering, focus on constructing specific parts of the work sche-
dules. As motivated in Chapter 2, focusing on creating specific parts of the work
schedules supports the natural planning process. A days off scheduling algorithm
and a weekend shift scheduling algorithm are proposed in Chapter 6 and Chapter 7,
respectively. In Chapter 9, we propose an algorithm that supports self-scheduling.

Table 3.2 provides an overview of the literature synonyms for personnel sche-
duling decisions. As may be observed from Table 3.2, literature reviews actually do
not use the term ‘shift rostering’. However, ‘rostering’ is used as part of the terms
‘Nurse rostering, ‘Personnel rostering’, ‘Stint based rostering’ and ‘Tour roster-
ing’. In addition, since we use ‘shift scheduling’ to indicate a different scheduling
decision, our terminology uses ‘shift rostering'.

Shift scheduling Shift scheduling defines shifts that should be staffed for a period
of, for example, a day, a week or a month. Recall from Section 3.1 that we defined
shifts as “a combination of consecutive work activities and breaks on scheduled
moments in time”. These shifts should respect a set of constraints and are supposed
to cover given staffing levels, expressing the required number of employees in
each time slot, as efficiently as possible. In addition to the required number
of employees, staffing levels may also specify required skill levels. Thus, shift
scheduling defines a set of shifts, which are not yet assigned to employees. Shift
scheduling only defines the shifts that are required to be staffed.

Cyclical scheduling A cyclical work schedule establishes that shifts are per-
formed in cyclical (rotating) patterns. A work schedule is specified for a certain
planning horizon, and after this period the schedule is repeated. A cyclic schedule
may be specified for either all or a subset of the employees of a department.
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3.2 Terminology

Days off scheduling Days off scheduling constructs schedules that indicate work-
ing days and days off for each employee. The specific shifts performed by employ-
ees on working days are determined at a later stage. A days off schedule should
satisfy labor legislation, specifying for example the maximum number of consecu-
tive working days. In addition, days off scheduling should ensure that sufficient
employees are available to be assigned to shifts. Days off scheduling is the main
topic of Chapter 6.

Weekend shift rostering Weekend shift rostering addresses the assignment of
weekend shifts to employees. The weekday shifts are assigned to employees in a
later stage. In Chapter 7, we introduce an algorithm for weekend shift rostering.
Also weekend shift rostering has to comply with labor legislation specifying for
example constraints on the number of consecutive working weekends.

Shift rostering Shift rostering is concerned with the assignment of employees
to shifts. On a planning horizon of typically a couple of weeks or a month, for
each day and employee it should be specified which shift the employee performs,
such a schedule we refer to as a work schedule. Shift rostering is subject to
labor legislation specifying constraints on assignment of a single shift, but also
on combinations of shifts.

Self-scheduling With self-scheduling, employees propose the work schedule
they prefer to work during a given planning horizon. Since these proposed sche-
dules possibly do not match the shift staffing demand as specified by the organiza-
tion, the planning problem is to reassign shifts in order to match the specified shift
staffing demand. In Chapter 9, we propose a method that supports the planner
to create feasible work schedules from the individual work schedules proposed by
the employees.

3.2.3 Online personnel scheduling

Online personnel scheduling addresses reassignment and replacement decisions
for late disturbances in workload or unexpected absences due to, for example,
illnesses. Online personnel scheduling is normally performed on an ad hoc basis
on a planning horizon that considers the next couple of days. Again, also online
personnel scheduling has to respect labor legislation.
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3.3 Personnel preferences and characteristics

In this section, we discuss the personnel preferences and characteristics that are
considered in the set of 300 personnel planning and scheduling literature ref-
erences from the comprehensive review in [255]. However, note that we exclude
literature that considers ‘pure’ shift scheduling, since this literature does not con-
sider characteristics of individual employees, and focuses only on determining a
set a shifts that efficiently covers demand.

The personnel preferences and characteristics discussed in the literature are
addressed one by one. For each of the characteristics, short descriptions and the
literature examples are provided below.

Skills In most personnel scheduling literature, skills are considered. Skills ex-
press whether an employee is allowed to perform a specific shift. For example,
the benchmark instances provided in [105], which are used for experimental studies
in [62, 65, 67, 68, 172], contain skills restrictions, as well as the benchmark instan-
ces of the international nurse rostering competition issued by the PATAT 2010 con-
ference [146], which are used for experimental studies in [19, 50, 64, 175, 197, 253].

Often, hierarchical skills are considered, which imply that a higher skilled
employee is allowed to perform lower skill shifts, but not vice versa [10, 33, 136,
206, 233]. Skill restrictions are often implied as hard constraints, however skill
restrictions modeled as soft constraints also occur. For example, some of the
benchmark instances of the international nurse rostering competition issued by
the PATAT 2010 conference [146] allow employees to be assigned to shifts for
which they are not skilled. Of course, such shift assignments are not preferred.
Research in [49] considers ‘secondary skills. Preferably, employees are assigned
to a shift that requires their ‘primary skill’, but ‘secondary skill assignments are
allowed if required. The days off scheduling application studied in [16] restricts
the set of allowed days off schedules dependent on the skills of the employees.
Seniority restrictions, as discussed later on in this section, may also be seen as
skill restrictions.

Days off requests Days off requests specify that an employee requests not to
work on a specific day, or on a specific part of a day. Days off requests are
mostly modeled as soft constraints. Examples are found in [203] and the bench-
mark instances provided in [105, 146] and the corresponding literature using these
benchmark instances for experimental results.
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3.3 Personnel preferences and characteristics

Shift requests  Shift requests specify that an employee requests to work (or not
to work) a specific shift on a specific day. Shift requests are mostly modeled
as soft constraints. Examples are found in [44] and in the benchmark instances
provided in [105, 146]. In self-scheduling applications, where employees propose
their preferred schedules, shift requests are inherent [18, 26, 110, 225]. In addition
to proposing schedules, some literature lets employees specify ‘importance’ of shift
requests, where ‘strong’ shift requests or more important to satisfy [110, 225].

Annualized hours constraints In annualized hours applications it is common to
have constraints that are defined for individual employees, as in the annualized
hours applications studied in Chapter 4 and Chapter 5 and in [101]. There, among
others, individual contract hours, and minimum and maximum working hours per
planning period may be defined.

Work schedule constraints Work schedule constraints specify allowed (hard con-
straints) or preferred (soft constraints) work schedule ‘properties’, such as shift
sequence constraints and the number of shifts during the planning horizon. Many
authors specify work schedule constraints per contract or employee type, and as-
sign a contract to or designate an employee type for each employee. Almost all
personnel scheduling literature considers work schedule constraints.

Cooperation constraints Cooperation constraints specify allowed or forbidden
co-operations between employees, implying that some employees should or should
not work on the same day. Examples are found in [71, 211, 243, 261].

Prefixed assignment A prefixed assignment is the assignment of an employee to
a specific shift that must be performed on a specific day. Prefixed assignments are
found in the instances of [105].

Availability Availability constraints specify whether employees are available or
not on specific days. Employees may be unavailable due to, for example, va-
cation [21, 130, 132, 168, 169, 170, 251], absences [140, 192], or fixed days
off [248, 268]. In [8] unavailabilities are considered, but the authors do not specify
underlying reasons for the unavailability. The online personnel scheduling ap-
plication in [192] aims to rebuild the work schedule when at least one employee
informs that he is unable to perform one or more future shifts.
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Seniority In many applications that consider seniority, the senior employees get
a higher priority of being assigned to their preferred shifts [8, 149, 190]. In [249],
constraints are implied on the minimum number of senior employees that should
be available for some specific shift, which is the equivalence of a skill restriction.

Wages Minimizing personnel wages is considered in some literature as part of
the objective, next to minimizing violations of soft constraints. Often either hourly
wages and overtime wages, or both, are considered [58, 59, 96, 111, 127, 145, 263,
267].

Hiring, firing and training cost In personnel planning applications, hiring, firing
and training cost may be considered, with the objective to minimize these under a
set of constraints [127].

Productivity Maximizing personnel productivity is considered in some literature
as part of the objective, next to minimizing violations of soft constraints. Produc-
tivity of employees may dependent on the department or location an employee is
assigned to [60, 76), or on the type of employee [23, 101, 244].

For the discussed preferences and characteristics, we observe that in many
papers parameter values are set for groups or ‘types’ of employees. Employees
are grouped into sets, and for each of these sets for example skills or wages are
defined, that are valid for all employees in the corresponding set.

3.4 Modeling

In general, mathematical models for personnel planning and scheduling problems
have the objective to minimize planning costs subject to a set of hard and soft
constraints. There are three types of constraints:

1. Sequence constraints, e.g., labor legislation specifying that an employee is
not allowed to work more than 6 shifts a week.

2. Coverage constraints, e.g., shift X should be scheduled Y times
3. Assignment constraints, e.g., skill restrictions and unavailabilities

Constraints from these categories may be formulated as either hard or soft.
Hard constraints express strict rules that the schedules must satisfy, such as labor
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3.4 Modeling

legislation. Soft constraints express scheduling rules that should be satisfied as
much as possible. Soft constraints are often used to express employee preferences;
violations lead to penalty costs.

Instead of providing an overview of the mathematical methods used by the
various literature references, we discuss how these mathematical methods handle
characteristics of individual employees in personnel planning and scheduling. For
a complete overview of mathematical methods used in the literature the reader is
referred to [255].

This section discusses mathematical methods used in personnel planning and
scheduling literature and how these methods are used to model personnel pref-
erences and characteristics. The main mathematical methods used in personnel
planning and scheduling are mathematical programming and heuristics, which are
discussed in Section 3.4.1 and Section 3.4.2, respectively.

3.4.1 Mathematical programming

Mathematical programming optimizes some objective function over a set of al-
lowed input values. The set of allowed input values is restricted by a set of
constraints. Commonly used forms of mathematical programming are linear pro-
gramming, where the objective function and the constraints are restricted to be
linear, and (mixed) integer programming where a (subset of) the input values is
restricted to be integer. For a more elaborate linear programming introduction,
see [91].

In the literature, mathematical programming is often used to model personnel
scheduling problems. Common formulations that are used can roughly be divided
into: explicit formulations and implicit formulations.

1. Explicit formulations. In these formulations, work schedules are defined
explicitly, i.e., for the entire planning horizon a sequence of shifts and days
off is specified. The objective is to select a work schedule for each employee
such that the scheduling demand is covered. Employees are not allowed
to be assigned to work schedules that violate any of their hard scheduling
constraints. Two categories of explicit formulations are considered:

a. Preference cost per work schedule. Literature examples: [111, 118, 142,
184, 243]. Mathematically this is formulated as follows:

Given a set of work schedules S. For each s € S, let x; denote the
number of times work schedule s is performed. For each work schedule
s € S, let ¢s > 0 denote a cost expressing the ‘burden’ of performing
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work schedule s. The objective is then to minimize ) ___o csxs under a set

of coverage constraints.

seS

b. Individual preference cost per work schedule. Literature examples: [4, 6,
7, 34, 57, 59, 76, 253] Mathematically this is formulated as follows:

Given a set of employees / and a set of work schedules S. For each
i€l sesS, let xis indicate whether employee i performs work schedule
s (xis = 1) or not (x;s = 0). Foreachi € l,s € S, let ¢;s > 0 denote a
cost expressing the ‘burden’ of employee i of performing work schedule s.
The objective is then to minimize ) ;> .. CisXis under a set of coverage
constraints.

2. Implicit formulations. In these formulations, work schedules are defined im-
plicitly. For each shift, it is decided whether an employee works or not.
The objective is to minimize cost implied by violations of soft constraints.
Hard constraints express combinations of allowed shift assignments. Two
categories of implicit formulations are considered:

a. Preference cost per shift. Literature examples: [20, 126, 137, 171, 221,
240, 248, 269]. Mathematically this is formulated as follows:

Given a set of shifts K and a set of employees /. For each i € I,k € K,
Xik indicate whether employee i works shift k (xix = 1) or not (xix = 0).
For each shift k, let ¢, > 0 denote a cost expressing the ‘burden’ of
working shift k. The objective is then to minimize ) ;> , -« ckXik under
a set of sequence, coverage and assignment constraints.

b. Individual preference cost per shift. Literature examples: [9, 10, 72, 110,
190, 206, 224, 263, 267]. Mathematically this is formulated as follows:

Given a set of shifts K, a set of employees / and a set of work schedules
J. Foreach i € I,k € K, let xi indicate whether employee i works shift
k (xik = 1) or not (x;x = 0). For each, i € I,k € K, let cix > 0 denote
a cost expressing the ‘dissatisfaction’ of employee i to work shift k. The
objective is then to minimize ) ., o CiXik under a set of sequence,
coverage and assignment constraints.

3.4.2 Heuristics

For many real-life optimization problems it is often not possible to find an optimal
solution in reasonable time. A heuristic optimization method aims to find high-
quality, but not quaranteed optimal, solutions in reasonable computation times.
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In personnel planning and scheduling several alternative heuristic optimization
methods are commonly used. In this section, we briefly discuss these methods and
address how these methods consider specific personnel preferences and charac-
teristics. An elaborate description of many heuristic optimization methods used in
personnel scheduling is found in [70].

We divide the heuristic optimization methods that are used in personnel plan-
ning and scheduling in constructive heuristics and meta-heuristics. Constructive
heuristics focus on a specific part of the optimization problem, whereas meta-
heuristics define a more general search scheme and make none or few assumptions
about the underlying optimization problem.

Constructive heuristics

Constructive heuristics that focus on one or more of the specific preferences and
characteristics are discussed here.

The heuristic proposed in [149] specifically focuses on skills of personnel. Per-
sonnel shift assignments are prioritized based on the commonality of commonality
of the skills in the skill set of an employee. The heuristic method in [161], as well
as some mathematical programming methods, focus on the assignment of days off.
The construction algorithm used in [136] focuses at the number of allowed day and
night shifts per employee.

We consider decomposition methods also as a kind of construction heuristics.
Decomposition methods split the optimization problem into multiple subproblems
that are solved sequentially. The order in which the subproblems are solved deter-
mine the priority being put on certain constraints or objectives of the optimization
problem. For example, the decomposition method of [245] first assigns the night
shifts, whereas [33] assigns days off before assigning the shift and subsequently as-
signing breaks and activities within the shifts. The decomposition proposed in [78]
first addresses cover requirements and days off, and subsequently addresses the
workload distribution.

Meta-heuristics

Meta-heuristics define a search strategy to search the solution space. Meta-
heuristics often make use of one or multiple neighborhood operators. Neighbor-
hood operators search alternative solutions within a ‘neighborhood’ of the current
solution. Neighborhood structures can vary from very simple to very complex.
The meta-heuristic scheme defines when to use which neighborhood structure and
whether the alternative solution found in the neighborhood is accepted or rejected.
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First, we discuss some of the commonly used neighborhood operations. Second,
we discuss meta-heuristics commonly used in personnel planning and scheduling.
Whenever applicable, we outline how the literature handles specific personnel
preferences and characteristics in either the neighborhood operations or in the
meta-heuristic scheme.

The k-opt(n) neighborhood operator swaps k sequences of n shifts between
employees. For example, the 2-opt(1) neighborhood, as used in [92, 175, 194, 219],
assigns employee A to a shift that is currently performed by employee B and vice
versa. Other common examples are 1-opt(1) [67, 175, 219], which unassigns some
employee from a shift and assigns it to another employee, and 2-opt(n) that swaps
a sequence of shifts between two employees. In [180] a ‘day-neighborhood’ is
proposed that determines the optimal work schedule for that specific day, where
the work schedule for the other days is considered as being fixed. In [70, 136, 180]
an ‘employee-neighborhood’ is considered, where the optimal work schedule for a
specific employee is determined, given the work schedules of the other employees.

The meta-heuristic schemes commonly used in personnel planning and sche-
duling are:

1. Variable neighborhood search (VNS), [49, 72]. VNS is based on the idea
of changing neighborhoods within a local search to identify better local
optima [72]. For example, iteratively changing the value of k in with a k-
opt(n) neighborhood structure.

2. lterated local search (ILS), [47, 62, 66, 68]. In each iteration of the ILS
meta-heuristic, part of schedule is unassigned, after which the shifts are
reassigned with the aim to generate an improved work schedule. For these
reassignments, ILS often makes use of neighborhood search operators. The
specific ILS implementation determines for which part of the schedule shifts
are unassigned.

3. Memetic algorithms, [43, 211]. Memetic algorithms store information on
which neighborhood operations worked well in the past to resolve violations
in specific situations. To describe such situations, the literature considers
for example skill-coverage and preference satisfaction [43, 211].

4. Tabu search (TS), [92, 266]. TS selects the neighborhood operation that
gives the best objective function value in the neighborhood, excluding the
current solution. This implies that tabu search might select a solution that
is worse than the current solution. To prevent cycling between solutions,
tabu search keeps a list of previous solutions which are declared ‘tabu’ and
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may not be chosen in a number of iteration. TS, as applied in [266], only
allows swaps between employees of the same seniority.

5. Genetic algorithms (GA), [130, 181, 261]. GA first generates a set of different
initial schedules. From this set of schedules new, improved, schedules are
generated by applying cross-over and mutation operations. Cross-over op-
erations combine two or more schedules into a new schedule, and mutation
operations apply a local change in a single schedule. A detailed descrip-
tion of various cross-over and mutation operations is found in [181]. In [261]
a mutation operator is proposed that first unassigns all stand-alone shifts
and subsequently reassign them. This is useful if stand-alone shifts are not
preferred. A mutation operator that considers priorities put on vacations is
considered in [251]. In [19] a mutation operator is proposed that unassigns
a shift randomly, but when reassigning looks specifically at a number soft
constraints, such as employee shift requests.

6. Other. Next to the described common meta-heuristic schemes, we mention
the so-called particle swarm optimization implementation in [235]. Without
going into the details of the particle swarm optimization meta-heuristic,
we mention a number of interesting neighborhood operators used in [235].
In [235], neighborhood operators are used that reassign shifts both from
employees that work on their preferred off days and from employees that
work more than their requested working hours. Moreover, [235] proposes a
neighborhood operator that reassigns shifts from employees that work on a
lower skill level than their actual skill level.

A special class of heuristics we want to mention are hyper-heuristics. In con-
trast to meta-heuristics, hyper-heuristics do not search through a search space
of solutions, but through a search space of heuristics. Hyper-heuristics are it-
erative methods that, in each iteration, select and apply a heuristic from a set
of heuristics [24, 50, 237]. A hyper-heuristic framework that includes a heuristic
that is designed to divide night and day shifts evenly is discussed in [24]. Other
hyper-heuristics mainly include heuristics that randomly reassign shifts.

3.5 Conclusions and discussion
In this chapter, we have discussed how the literature considers preferences and

characteristics of individual employees in personnel planning and scheduling de-
cisions. First, in Section 3.2, we have introduced a terminology for personnel
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planning and scheduling decisions. Next, in Section 3.3, we have provided an
overview of the various personnel preferences and characteristics that are con-
sidered in the literature and finally, in Section 3.4, we have outlined how these
preferences and characteristics are modeled in mathematical optimization methods.

As outlined and motivated in Chapter 2, the goal of this dissertation is to
investigate, design and develop personnel planning and scheduling algorithms
that in particular focus on personnel preferences. In the literature, personnel
preferences are often modeled as soft constraints. The relative importance of each
soft constraints in relation to the other soft constraints is set through user-defined
weights. However, in practice it is often hard to properly set the weights of soft
constraints.

In order to cope with personnel preferences in personnel planning and sche-
duling, many human planners decompose scheduling problems into subproblems.
Therefore, we believe that a promising research direction for personnel planning
and scheduling methods is to explicitly focus on one or some of the employee
preferences. If, in practice, the weight of one soft constraint dominates another, this
may be handled by decomposition techniques that focus on this soft constraint in
one of the first phases of the decomposition. Two of the studies in this dissertation
propose decomposition techniques (Chapter 6 and 7) that focus on a specific set
of soft constraints.

An additional promising research direction is to develop scheduling algorithms
that support self-scheduling. In self-scheduling, personnel preferences are of
course inherently considered. In Chapter 9, we design an algorithm that supports
the self-scheduling process. Next to this, we introduce preferences and character-
istics of individual employees in shift scheduling by integrating shift scheduling
and shift rostering in Chapter 8.

Next to the mentioned personnel scheduling applications, we also consider
a personnel planning application, since we believe it is important to carefully
consider personnel preferences and characteristics in personnel planning as well.
In Chapter 4 and 5, we study annualized hours applications in which, especially
in Chapter 4, we introduce a high degree of flexibility with regard to modeling
specific individual contract types.

22



3.5 Conclusions and discussion

Table 3.2: Synonyms for personnel scheduling decisions used in literature reviews

Planning decision

Literature terminology

Shift scheduling

Cyclical scheduling

Days off scheduling

Shift rostering

Weekend shift rostering
Self-scheduling

Online personnel scheduling

Crew pairing [220]

Duty generation [124]

Shift scheduling [15, 29, 124, 139]
Staff shift scheduling [152]

Temporal manpower requirements [247]
Time-of-day scheduling [15]

Cyclical scheduling [29, 71, 86, 139, 199, 220, 236]
Fixed scheduling [71]
Cyclical rostering [260]

Day-off scheduling [29]

Days off scheduling [124, 139, 255]
Day-of-week scheduling [255]
Days-of-week scheduling [15]

Crew sing problem [220]

Employee scheduling [71]

Hospital nurse scheduling [157]

Hospital personnel scheduling [71]

Line of work construction [124]

Nurse rostering [71, 86, 109, 164]

Nurse scheduling [71, 86, 124, 164]
Personnel rostering [109]

Personnel scheduling [71, 109, 255]
Personnel shift allocation [239]

Shift assignment [152]

Shift scheduling [124, 247, 255]

Staff assignment / Roster assignment [124]
Assigning staff to line of work [124]

Stint based rostering [124]

Tour rostering [86]

Tour scheduling [15, 139, 255]

Workforce staffing / Workforce scheduling [236]

(None)

Self-rostering / Self-scheduling [71]
Interactive scheduling [71]

Disruption management / Staff rescheduling [152]
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CHAPTER 4

Cost-Efficient Staffing under Annualized
Hours

4.1 Introduction

In many industries, demand for skilled workers varies throughout the year, for ex-
ample due to seasonal influences. In addition, workforce capacity varies due to, for
instance, vacations, illnesses, and other scheduled and unscheduled unavailability.
A good contract-mix and skill-mix, and flexibility within employee contracts such as
the annualized hours regime, enable organizations to efficiently match workforce
demand and availability. As stressed in Chapter 2, such an efficient matching of
workforce demand and supply is especially important to labor-intensive industries
such as healthcare and professional customer services.

To match workforce demand efficiently, this chapter integrates a capacity al-
location and a staffing problem, see Chapter 3 for definitions of these problems.
The staffing problem studied in this chapter, aims to select from a given set of
candidates, with their individual skills and contracts, the ‘optimal’ subset of em-
ployees to cover the workforce demand. Here, we define optimal as cost-efficient.
Employee costs depend on their contract type. Contract types we consider in
this chapter are full-time, part-time, min-max contracts, and subcontractors. This
staffing problem is integrated with an annualized hours application. We refer to
this as the staffing under annualized hours problem. Although workforce demand
is uncertain to some extent, we consider a deterministic variant, and assume that
operational demand deviations can be captured by letting employees work extra
or hiring subcontractors.

The contribution of this research is threefold. First, we develop a model that
integrates two personnel planning problems, as discussed in the previous para-
graph. Second, with our model, several practical issues can be addressed, such
as vacation planning, skill-mix decisions, and hiring and firing policies. Third, we
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apply the model to a case study of the Emergency Department of the University
Hospital St. Radboud Nijmegen in the Netherlands, and illustrate for some of the
business questions how the model addresses them. For this case study, applying
annualized hours yield a possible annual savings of 5.2% or €86000 on person-
nel cost within this single department of the hospital. This case study, where
the annualized hours regime was not applied prior to the start of this study, also
motivated this research.

This chapter is structured as follows. Section 4.2 discusses the related litera-
ture. In Section 4.3 we give a formal problem description, and in Section 4.4 we
present a mathematical programming formulation of this problem. The mathemat-
ical program turns out to be very flexible with regard to contract types, which we
discuss in Section 4.4.2. In Section 4.5 we address a number of business questions
that can be answered using our model, and Section 4.6 discusses the application
of our model to the case study. Conclusions are found in Section 4.7.

4.2 Literature review

This section first discusses the staffing literature, and, after that, the annualized
hours literature is discussed.

The classical staffing problem as in [212] determines the number of employees
needed to cover a given workload, where employees are considered equal, whereas
we consider employees with different contract hours. In [51, 88, 258] staffing
problems in production planning settings are studied, which focus mainly on profits
that are induced by production capacities and demand. In [173] a staffing problem
is studied in which employees can be hired and fired per period. Demand and
employee working hours are given per period. In addition, shortages are allowed,
but lead to a penalty. The decisions in [173] are mainly about when to hire and fire
employees, without considering annualized hours. In [122] a staffing problem is
solved where demands are expressed in shifts per period, under constraints on both
the number and sequences of shifts employees can work, but without considering
annualized hours.

In the annualized hours literature, the workforce demand is often specified in
hours of work that need to be staffed during some planning period, which also
holds for the annualized hours application studied in this chapter. However, some
authors specify demand in shifts that need to be staffed [21, 22, 158, 159]. In[21, 22]
mathematical programming approaches are proposed to solve an annualized hours
problem, with demands expressed in the number of shifts, and constraints on the
number and sequences of shifts employees can work. In [158, 159] even work
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schedules for a one year are created explicitly.

Most annualized hours models in the literature consider a deterministic de-
mand. However, [176] considers a stochastic demand, and optimizes over multiple
demand scenarios, each having a probability of occurrence. In this chapter demand
is considered to be deterministic. Furthermore, we discretize workforce demand
into skills, which is also done in [95, 97, 102, 138, 178].

In most annualized hours literature, the planning horizon of one year is dis-
cretized into planning periods of weeks or days, and only a single employee con-
tract type is considered. Multiple contract types are considered in [148, 176, 178],
who distinguish full-time and part-time employees, i.e., they consider employ-
ees with different contract hours. In addition to full-time and part-time con-
tracts, [96, 97, 99, 100, 102] also consider subcontractors. In this chapter, we
consider full-time contracts, part-time contracts, min-max contracts and subcon-
tractors. In addition, we consider hiring and firing of employees, which is also
done in [148]. A classification scheme for annualized hours problems ifs proposed
in [98].

Next to annualized hours, the literature considers the related concept of Work-
ing Time Accounts (WTAs), see [94, 101, 177, 179, 206, 207]. A WTA holds a bal-
ance of the cumulative difference between an employee’s contract hours and the
hours worked. The objective is then to find an assignment where the WTA stays
between specified boundaries. In Section 4.4, we outline that WTAs can also be
incorporated in our model.

The most used solution method in the literature is also used in this research:
mathematical programming. In[158, 159] special purpose algorithms are developed
for their variants of the annualized hours problem. In Chapter 5, we propose a
stochastic optimization method, known as Cross-Entropy optimization.

The contribution of this research is that it considers modeling annualized hours
in combination with multi-skill and multiple contract staffing problem, while min-
imizing salary cost.

4.3 Problem description

The objective of the problem studied in this chapter is to select the least cost-
expensive subset of employees that stays within the bounds implied by annualized
hours, and covers demand. Demand for work is given in terms of skills and numbers
of hours of work required per skill and time slot. Employees can only perform work
for which they are sufficiently skilled. The cost of an employee is represented by
his salary. A salary is specified in an employee’s contract, which also specifies
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skills and working hours. We assume a salary has a fixed and a variable part.
The fixed part is paid for the number of working hours specified in the contract,
and a variable part is paid for additional hours. The salary of full-time employees
normally only has a fixed part, whereas subcontractors have a variable fee per
hour. Section 4.4.2 describes the various contract types we consider.

The planning horizon of one year is discretized into time slots of, e.g., a week or
a day. We have constraints with respect to minimum and maximum working time, for
every time slot and for the complete planning horizon. In addition, we specify sub-
horizons of, for example, 4 or 13 weeks, for which we also imply constraints with
respect to minimum and maximum working time. These constraints are employee
specific and are determined by an employee’s contract type.

We emphasize that the problem studied here is a tactical and not an operational
problem. The solution to the problem studied in this chapter is the number of hours
that employees should work per skill and per time slot. We do not aim to construct
actual shift rosters on a weekly (or daily) basis.

4.4 Modeling

This section discusses our modeling of the annualized hours problem. We model
our problem as a Mixed-Integer Linear Program (MILP). Section 4.4.1 discusses
the MILP, and motivates why MILP is used as modeling technique. Section 4.4.2
discusses how various employee contracts are modeled in the proposed MILP, and
Section 4.4.3 discusses possible model extensions.

4.4.1 Mathematical programming

The problem studied in this chapter, as discussed in Section 4.3, can be seen as a
deterministic assignment problem with capacity constraints. The solution to this
problem specifies which part of the total demand is covered by which employees
(assignment), while complying with capacity constraints on the employee working
hours. To solve this problem exactly we propose an MILP.

The notation used in this chapter is defined as follows:
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Sets, parameters:

/ set of employees, indexed by i

J set of skills, indexed by j

Ji € J  setof skills of employee i

T set of time slots, indexed by t

Vv set of subsets of T, indexed by v

T, C T subset v of time slots for which working hour constraints have to
be enforced

djt demand for skill j in time slot ¢ (in hours)

cfx fixed cost of employee i

e variable cost of employee i

lit , uyy  minimum, maximum working hours of employee i in time slot t

[y, ul  minimum, maximum total working hours of employee i in the time
slots of T,

li, u; minimum, maximum total working hours of employee i during the
entire planning horizon T

Variables:

Xijt number of hours employee i works on skill j during time slot ¢

Xit number of hours employee i works during time slot t, ie,
Xit = Zjej Xijt

Yi 1 if employee i is selected in the workforce, 0 if not

TC total cost of all employees

TC™ sum of fixed cost of all employees

TCYr sum of variable cost of all employees

The fixed cost, ¢, is incurred if the employee is part of the workforce. Variable
costs are incurred if the employee works more than the minimum hours that he
should work, [;, at a rate of c¢}*" for every excess hour. Note that, using [; here,
and not [;4, is the basis of the annualized hours regime.

The objective function is:

minTC = TC™ 4 TC", (4.4.1a)
First, we make sure demand is met in every time slot, and for every skill category:

Y xjp>di jELLET, (4.4.1b)

icl
and that employees are only assigned to work they are skilled for:

xjp=0 i€l jé&fi,teT. (4.4.1¢)
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Next, we define the auxiliary variable x;; as follows:

xie=Y xj i€lLteT. (4.4.1d)
jel
The next constraint ensures that in every time slot, the working hours of every
employee are between the lower and the upper bound:

lipyi < xip <upy; i€l teT. (4.4.1e)

We multiply [;; with y;, since the bounds only hold if employee i is part of the
workforce. Furthermore, by multiplying u;; with y; we enforce y; = 0 = x; =
0(teT).
For every v € V, we have similar lower and upper bounds on the total working
time:
Lyi<Y xa<uly; i€lveV. (4.4.11)
teT,

Constraint (4.4.1f) allows us to model for example constraints on the minimum and
maximum working time in 4 or 13 week periods.

The next constraint ensures that for every employee the working hours are
between the lower and upper bound of the planning horizon:

Ly <Y xu <uy; i€ 1. (4.4.1)
teT
The fixed cost are defined as:
TCh =3y, (4.4.1h)
iel

and, the variable cost are defined as:

TCY = Z C}/ar ( (ZX”) _ liyi) . (441[)

icl teT

Note that TC"" is non-negative, due to Constraint (4.4.1q).
The MILP is completed with the following definition constraints:

xjt >0 ieljeltel, (4.4.1))

and:
y, €{0,1} iel (4.4.1k)
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Now, the MILP used in this chapter is given by (4.4.1).

If we want to ensure that some subset of employees is part of the workforce,
e.g., because these are employees with long-term contracts who cannot easily be
fired, this can easily be added to our model. Define /°™'°Y as the set of employees
that must be part of the workforce, and add the following constraint to the model:

yi=1 ig/[mby (4.4.2)

Note that Working Time Accounts (WTA), discussed in Section 4.2, can be
modeled in (4.4.1) using appropriate values for V, [}, and u}.

4.4.2 Modeling employee contracts

The MILP model (4.4.1) allows to model various contract types. This section il-
lustrates how to model various contract types, by adjusting model parameters.
Section 4.4.2 considers full-time and part-time contracts, Section 4.4.2 considers
min-max contracts, and Section 4.4.2 considers subcontractors. Section 4.4.2 de-
scribes how the model can be adapted so that it determines the optimal part-time
factor for employees not part of /°mPloY,

Full-time and part-time employees

We assume that full-time and part-time employees either work in all time slots
or not at all. These employees are paid a fixed employment cost cf* for a fixed
number of hours per year. Hence, the variable hourly cost ¢}*" equals 0. To ensure
that full-time and part-time employees work exactly their annual contract hours,
we set

i=ui=Y) (hi—au), (4.4.3)

teT

where h;; denotes the employee’s contract hours in time slot t, and a;; absences,
which are implied by, e.qg., vacations, education, and predicted illnesses. Note that
hit generally is the same in each time slot ¢.

Min-max employees

A common contract type in Dutch healthcare, is a so-called min-max contract. A
min-max contract specifies per time slot the min(imum) number of hours employees
are paid, and thus should work. In addition, it specifies a max(imum) number of
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hours the employee may be called to work. The additional hours are paid at
an hourly rate of ¢/*. In our model, /;; and u; equal the min and max hours,
respectively. Furthermore, [; =) ,_; li, which implies that a variable cost ¢{*" is
incurred for every hour worked more than [;.

Subcontractors

Subcontractors are considered to only have variable cost. Hours worked by sub-
contractor i are paid at an hourly rate of ¢{*". In practice, subcontractors can either
be internal, as part of a flexpool department, or external. In general, c¢{*" is higher
for external subcontractors, and subcontractors are more expensive than full-time,
part-time, and min-max employees.

Non-fixed part-time factor

For a full-time or part-time employee i that is not part of /*™PY we can adapt
the model to determine the optimal part-time factor. To this end, we use the same
lower and upper bounds [;; and u; as for a full-time employee, and we relax
the integrality constraint on y;, t.e., we let y; € [0,1]. Then we let the model
determine the optimal part-time factor, y;, for this employee. To prohibit that y;
attains an undesirable low value, i.e., smaller than some given fraction p;, we add
some constraints where we let the binary variable z; indicate whether employee i
is employed (z; = 1) or not (z; = 0):

zi > y; (4.4.4a)
Yyi = pizi (4.4.4b)
zz € {0,1}. (4.4.4¢)

4.4.3 Model extensions

Model (4.4.1) aims to find a cost-efficient workforce that covers demand with work-
ing hours x;; in time slot ¢ between [;; and u;; for each employee i. For an employee
i with l;; = 35 and u;; = 45, working hours may alternate between 35 and 45,
whereas a solution where employee i works 40 hours every week might also offer
a feasible, and a more preferred, solution. The following cost component may be
included in objective function (4.4.1a) to enforce this:

MY i — ), (4.4.5)

i€l teT
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where A1 is a weight that determines the importance of this component. Note that
adding this component makes model (4.4.1) quadratic instead of linear.

The following component may be used to steer on skill preferences of employ-
ees, where ¢;; denotes an artificial cost of employee i working on skill j:

)\2 . Z Z Z Cinijtr (446)

iel jeJ teT

where A, is a weight. Since full-time and part-time employees are hired for
the entire year, this may imply overcapacity on an annual level. The following
component may be used to distribute this overcapacity evenly over the year:

2

Y D xe=) di] (4.47)

teT iel jel

where A3 is a weight.

If we want to prohibit that the cost components discussed in this section in-
fluence the employee selection in model (4.4.1), we first run model (4.4.1) without
these cost components, add the selected employees i to /°™P'°Y, and then rerun the
model.

4.5 Business questions

Our model can be used to address various business questions. It can be used
to answer questions regarding contract-mix and skill-mix planning, vacation and
education planning, efficiently using annualized hours, subcontracting, and it can
provide rostering support. We address these in the following paragraphs. In Sec-
tion 4.6 we present a case study that addresses some of these business questions.

Contract-mix and skill-mix planning The model can be used to optimize the
contract mix and skill mix of the workforce. To this end, one can experiment with
the composition of the set /. The experiments help to address questions such
as: by the end of the year two employees retire, what to do? Replace them by
employees with the same contracts and skills, replace them by other employees,
or do not replace them at all?
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Vacation and education planning Many employees prefer to take their vacation
during the summer season. The model can support planners to determine whether,
given a vacation plan, there are sufficient employees to cover the (predicted) work-
load during vacation periods. In addition, the model supports education planning,
and determines whether it is feasible to schedule a training for some employees
in the same week.

Annualized hours One of the main goals of the model is to return a feasible
annualized hours plan. We discuss this in detail in our case study in Section 4.6.

Subcontracting vs. additional hiring Covering the complete workload with con-
tracted employees is not necessarily the most cost-efficient. Hiring subcontractors
for peaks in the workload, or at times when many employees are unavailable, e.g.,
due to vacations, might be cheaper. We discuss this in more detail in the case
study in Section 4.6.

Rostering support Using annualized hours implies ‘saving’ hours in weeks when
employee availability is high, and ‘spending’ hours when the opposite holds. The
model outcome provides planners information in which weeks to save hours and in
which weeks to spend extra hours. This information can also be used to set budgets
on the number of hours employees may be scheduled during a scheduling period.
In addition, this information can be used to respond adequately to unexpected
employee absences such as illnesses. Suppose an employee calls in sick during the
morning. It is then not necessarily cost-efficient to call in a contracted employee.
Assigning a contracted employee to work extra in April might imply that he cannot
work extra during summer. When subcontracting is cheaper in April than in the
summer, and more personnel is needed during the summer, it may be more cost-
efficient to subcontract in April and schedule the contracted employees in the
summer. Our model supports such analyses.

4.6 Case study

As mentioned in the introduction, annualized hours and other forms of workforce
flexibility may contribute significantly to cost reductions in service industries such
as healthcare. The Emergency Department of the University Hospital St. Radboud
Nijmegen, the Netherlands, was interested in exploring the impact of introducing
annualized hours in their personnel planning. Thus, we applied our model to a
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case study of the Emergency Department. We created a decision support system in
an MS Excel workbook, where the model's parameter values can be specified. The
MILP model (4.4.1) is modeled in Aimms, which imports data from Excel. Aimms
uses CpLex 12.2 to solve the MILP.

In Section 4.6.1 we describe the data and the experimental setup, and Sec-
tion 4.6.2 presents the experimental results.

4.6.1 Data description and experimental setup

The department has 32 employees with a mixture of full-time and part-time con-
tracts. In addition, the department uses subcontractors. A full-time employee has
an annual salary of €60000, and the hourly tariff of subcontractors is approxi-
mately 1.7 times the hourly salary of contracted employees. The planning horizon
of one year is discretized into 52 one-week time slots. Nine 8-hour and three
9-hour single-skilled shifts need to be staffed every day. Hence, 99 hours need to
be staffed in a day, 693 hours in a week, and 36036 hours in 52 weeks (a year).
For every employee we know his contract hours, i.e., the number of hours the em-
ployee is expected to work during a week, which we denote by h;;. Note that for
most employees hj; is the same in every time slot . Due to absenteeism, e.g.,
vacations, illness, and staff meetings, the hours an employee is available for work
is less than his contract hours. We refer to available hours as the net availability
of an employee. The net availability of employee i, in time slot ¢, is defined as
the difference between his contract hours h;; and his absences a;;. We performed
an extensive analysis to determine the expected net availability of the employees.
The combined gross and the combined net availability of all employees are shown
per week as the upper dashed line and the solid line in Figure 4.1, respectively.
The lower dashed line represents the demand of 693 hours per week.

From Figure 4.1 we observe that in 13 of the 52 weeks demand is larger than
the net availability of the employees. Hence, the net availability has a major
influence on the workforce's ability to cover demand. Figure 4.1 illustrates that
the workforce’s ability to cover demand in this case study is greatly influenced
by fluctuations in workforce availability. Using graphs such as the one in Fig-
ure 4.1 helped the hospital to better understand situations of overstaffing and
understaffing.

When applying annualized hours, as discussed in Section 4.1, one is allowed
to deviate from the contracted (weekly) hours, as long as on an annual level
an employee does not work more than his annual contract hours. To study the
effect of annualized hours, we introduce p;, which denotes the ‘annualized hours
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percentage’, and we let [;; and uj:
lit = (1 — pi)(hit — air), (4.6.1)

uig = (1 + p)(hit — ai). (4.6.2)

Hence, [1 — pi, 1+ pi] specifies the bandwidth around the employee’s net available
hours (h;; — a;;) within which we allow deviations from the net available hours.

Figure 4.1 shows the bandwidths around the net available hours of the em-
ployees for p; = 0.1 and p; = 0.2 as the shaded area and the crosshatched area,
respectively.
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Figure 4.1: Demand, availability and annualized hours bounds for p; = 0.1 and p; = 0.2

From Figure 4.1, we observe that even for p; = 0.20 the net available hours
of the employees together cannot cover all workforce demand, since in week 18
there is still a difference of 18 hours between the workforce demand and the upper
bound of the employees’ net availability.
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In order to analyze the effects of the salaries of full-time and part-time em-
ployees versus subcontractor tariffs, we let the salaries of full-time and part-time
employees equal their annual contract hours. Thus, we let an employee have a
unit ‘cost’ per contracted hour. Hence, for an employee with 36 contract hours per
week, we set an annual ‘salary’ of 1872 (= 52 - 36). For a full-time employee we
thus set c‘?" = 1872, and ¢}*" = 0. However, since [; = u;, see Section 4.4.2, we
never incur variable cost for full-time and part-time employees. Note that, due to
absences, the actual cost per productive hour of full-time and part-time employees
is larger than 1. Table 4.1 presents an overview of the full-time and part-time
contracts, the contract hours, the ‘salaries’ and the number of employees that have
a certain contract.

Table 4.1: Overview of employee contract hours and salaries

Contract hrs  Employees  ‘Salary’

36.00 9 1872.00
32.00 10 1664.00
34.11 2 1773.72
30.32 4 1576.64
28.80 1 1497.60
26.53 1 1379.56
25.36 1 1318.72
24.63 1 1280.76
24.00 1 1248.00
16.00 2 832.00

In Table 4.1 we see, e.g., that 10 employees have a contract for 32 hours and a
‘salary’ of 1664. In total there are 32 employees, and together they have a ‘salary’
of 51523.

The main goal of the case study is to gain insight in the effects of annualized
hours. Therefore, we vary p; between 0.00 and 0.25, and analyze the effect on the
selected workforce. Furthermore, we set /™! = §J; so we let the model choose
whom to employ. In addition, we analyze the effect the subcontractor cost has on
the optimal solution. We vary the variable cost of subcontractors between 1 and
5, for every value of p;. Moreover, we study the effects of p; in the case we do not
have subcontractors.
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4.6.2 Experimental results

This section presents the experimental results. We do not discuss computation
time in detail, since the maximum observed computation time is 10 seconds, which
is negligible for this kind of analysis and decision making.

Table 4.2 presents results on the cost of the optimal solutions. Note that we
divided the total cost (TC) of the optimal solution by 36036, which is the cost
when all demand is covered by subcontractors with ¢/* = 1. Note that, if ¢/*" =1
the optimal solution is to only hire subcontractors, since, as noted before, the full-
time and part-time employees in fact cost more than 1 per productive hour due to
their absences. By dividing the total cost (TC) by 36036, it is easier to compare
the various solutions.

Table 4.2: Total cost (T C) divided by 36036

c}/®" subcontractors

Pi 1 15 1.7 2 25 3 4 5

0% 1.00 133 135 137 140 1.43 148 1.51
5% 1.00 133 134 135 137 138 140 1.42
10% 1.00 133 134 135 136 136 137 138
5% 1.00 133 134 134 135 135 135 1.36
20% 1.00 133 134 134 134 134 135 135
25% 1.00 133 134 134 134 134 134 134

82882313

—_

As mentioned, the current workforce has a ‘salary’ of 51523, which divided by
36036 equals 1.43. From Table 4.2, we observe that in most situations the model’s
solution is cheaper than employing the current workforce. If subcontractors are
not used (c}®" = 00), the current workforce is only able to cover the total demand
if p; = 0.25, since this is the only situation where 7TC < oo. Moreover, without
any subcontracting, annualized hours yields a possible savings of 5.2% or €86000.
Furthermore, although for a subcontractor tariff of 1.7 the effect is minor, we observe
that the optimal solution cost decreases for increasing p;. This is to be expected,
since a larger p; implies larger flexibility for the full-time and part-time employees
to cover the workload, and hence the dependence on (expensive) subcontractors
decreases. We also observe this when consider the total subcontractor cost in the
optimal solutions, which is shown in Table 4.3.

Additionally, from Tables 4.2 and 4.3, we observe that for small p;, the depen-
dence of the organization on the cost of subcontracting is larger. For example, if
subcontracting is three times as expensive as reqular employees (¢/*" = 3), the

L
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Table 4.3: Total subcontractor cost for varying p; and subcontractor cost

¢/®" subcontractors

pi 1 15 17 2 25 3 4 5 0
0% 36036 8273 5473 4636 5795 4990 5964 5979 oo
5% 36036 8273 1871 2202 2752 2237 2982 3489 oo
10% 36036 8273 1857 2185 887 1064 1419 1465 oo
15% 36036 8273 1857 578 722 397 529 426 oo
20% 36036 8273 1857 119 149 179 239 299 oo
25% 36036 8273 64 75 94 113 44 5 0
total workforce cost is 7% larger for p; = 0% compared to the siutation where

pi = 25%. If ¢/ =5, this increases to 13%, and if we do not allow subcontracting
(c}*" = o) then there is not even a feasible solution in which all demand is covered
for pi < 25%. Hence, if the workforce is less flexible, the workforce cost is more
sensitive to changes in subcontractor costs, which is an external factor that is often
not influencable by the organization. Thus, using annualized hours reduces finan-
cial risk. Moreover, the results show that it is not always cost-efficient to cover all
demand with contracted employees, since for most test instances subcontractors
cover part of the workforce demand.

4.7 Conclusions

In this chapter, we studied a staffing problem that explicitly considers the annu-
alized hours regime. We modeled this as a mathematical program. Our model
includes various contract types, such as full-time, part-time, min-max, and sub-
contractors, which are modeled in a generic and flexible way: the model only
has a single, generic contract type, and contract types can be included in the
problem instances by setting the correct model parameter values. The objective of
our model is to cost-efficiently match workforce capacity to demand by exploiting
flexibility in employee contracts and by using annualized hours.

We discussed how annualized hours are incorporated in our model. Further-
more, we discussed how the model can be used to address various business ques-
tions regarding contract-mix and skill-mix planning, vacation and education plan-
ning, subcontracting policies, and how it can be used to provide rostering support.

We applied our model in a case study of the Emergency Department of the
University Hospital St. Radboud Nijmegen, the Netherlands. Experimental results
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show that the annualized hours regime decreases the dependency of the depart-
ment on subcontractor tariffs, and thus reduces financial risk. In addition, without
any subcontracting, annualized hours offers a possible savings of 5.2% or €86000
for this department. Moreover, results show that covering all workforce demand
with contracted employees is not necessarily cost-efficient. If there is a mismatch
between capacity and demand, due to peaks in demand or peaks in employee ab-
sences, assigning subcontractors to these peaks might be cheaper than contracting
additional full-time or part-time employees.
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CHAPTER b

Staffing under Annualized Hours Using
Cross-Entropy Optimization

5.1 Introduction

In this chapter, we integrate a staffing and an annualized hours problem. We refer
to this as the staffing under annualized hours (SUAH) problem. For the SUAH
problem, it is not straightforward to define efficient neighborhood operators on the
underlying combinatorial optimization problem, which we motivate in Section 5.3.
Therefore, this chapter investigates the potential of Cross-Entropy optimization to
solve the SUAH problem, since in contrast to other metaheuristics, Cross-Entropy
optimization does not require a well-defined neighborhood structure. Since Cross-
Entropy optimization has shown to work well on related optimization problems,
we are going to investigate how Cross-Entropy Optimization can be tailored to
solve SUAH.

Cross-Entropy (CE) optimization is widely used for rare event simulation, but
is also used to solve combinatorial optimization problems. To solve a combinatorial
optimization problem, CE iteratively generates solutions. In each iteration, a set of
solutions is generated, and based on the best solutions in this set, the generation
scheme is updated, with the aim to generate better solutions in the next iteration.
For a general introduction to Cross-Entropy optimization, we refer to [228]. In
Section 5.4, we provide a brief description of Cross-Entropy optimization.

CE optimization is successfully applied to problems related to SUAH, such as
the multidimensional knapsack problem (see, e.g., [128]) and the capacitated facility
location problem (see, e.g., [80]). The objectives of multidimensional knapsack and
capacitated facility location are to select an ‘optimal’ set of items and an ‘optimal’
set of (supply) locations respectively. In [80] the capacitated facility location
problem is solved using CE and in [82, 113, 230] CE is used to solve (variants of)
knapsack problems. In addition to successful CE applications to related problems,
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metaheuristics, such as tabu search and simulated annealing, have also shown to
work well on knapsack problems [128]. An overview of the related literature is
found in Section 5.2.

The results of our CE implementation show that, across a broad range of
instances, CE considerably outperforms a mathematical programming formulation
solved with CpLex. Specifically instances with 10 or more planning periods, the
periods over which the annualized hours problem distributes available capacity, are
solved relatively quickly by CE. In practice, the planning horizon often contains
dozens of planning periods, for example, if the planning horizon is subdivided
into weeks, there are 52 planning periods in a year. The CE implementation
solves all our instances in matters of seconds and finds solutions close to or
very close to optimal. Within an imposed time limit of an hour, occasionally CE
even finds better solutions than CpLEx. Since CE is designed for single-objective
unconstrained optimization problems, we included a straightforward repair function
in our approach to guarantee feasible solutions. Given its solution speed and
quality, CE is the preferred method for quickly analyzing multiple input scenarios.
Also CE is well-suited for assessing the effect of changes in parameter values, for
example vacation requests or illnesses. If optimal solutions are required, as in
Chapter 4, mathematical programming should be considered.

This chapter is structured as follows. Section 5.2 discusses the literature. Sec-
tion 5.3 gives a mathematical description of SUAH, and further motivates why we
use CE optimization to solve it. Next, Section 5.4 describes the CE optimization
technique, and Section 5.5 discusses how we employ CE to solve the SUAH prob-
lem. Section 5.6 gives numerical results, and conclusions and recommendations
are presented in Section 5.7.

5.2 Literature

For the literature on staffing and annualized hours the reader is referred to Sec-
tion 4.2. Here, we discuss applications of Cross-Entropy optimization to combina-
torial optimization problems.

CE is applied to a variety of combinatorial optimization problems. Some of
these problems are closely related to our problem as outlined in Section 5.3.
In [113] CE is used to solve a single-dimensional knapsack problem. In [82] CE is
again applied to the single-dimensional knapsack problem, but then with setups:
a fixed cost is incurred if an item is selected and a variable profit is earned
depending on the ‘integer’ usage of this item. In [80] large-scale capacitated
facility location problems are solved by CE. This problem is similar to ours, see
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Section 5.3. Although the literature does not report on CE applications to solve
the multidimensional knapsack problem, the MaTLAB File Exchange Central holds
a script for this problem [204], see Section 5.6.

Applications of CE to combinatorial optimization problems that are less related
to our problem are found in, e.g., [81] that solves a capacitated lot-sizing problem
with setup times. Moreover, [108, 147, 228, 231] solve traveling salesman problems
(TSP) using CE, and [108, 229, 230] solve the max-cut problem using CE. In [230],
a variant of CE is proposed, and applied to numerous combinatorial optimization
problems. In [17, 79, 151] network reliability optimization problems are solved by
CE, and [45] addresses a multi-objective optimization problem.

5.3 Problem description

Consider a workforce planning problem where the planning horizon is discretized
into a set of time slots T, indexed by t. Employing staff is subject to cost and
availability constraints. The set of employees is represented by / and indexed by
i. Employees are employed throughout the whole planning horizon at a cost c¢;.
The number of working hours employee i is available during the whole planning
horizon is w;. Furthermore, for each period t € T, there is a demand for a number
of working hours, d;. In addition, we have lower and upper bounds on the number
of hours employee i should and can work during period t, denoted by [;; and uj,
respectively. Here, [;; represents the minimal number of hours employee i is paid
for and u; represents the maximum number of hours employee i is available in
period t. It is assumed that u;; > l;; > 0. The objective is to select a subset of
the employees and determine their working hours during every period t, such that
demand is met in each period, and the number of hours the selected employees
work is within the capacity restrictions. Furthermore, the cost of the employees
should be minimized. We refer to this problem as the staffing under annualized
hours (SUAH) problem.

Let x; indicate whether employee i is part of the workforce (x; = 1) or not
(x; = 0), and let x;; denote the number of hours employee i works in period t. The
objective is to minimize the cost of the employed workforce:

Z CiXi. (531 a)

Three constraints are implied on the selection of employees. First, in every period
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t demand has to be met:
Y xu>d teT. (5.3.1b)
iel
Second, the number of hours an employee works throughout the planning horizon
equals w; if the employee is part of the workforce, and O otherwise:

Zx,-t =wyx; i€l (5.3.1¢)

teT

Third, per period, per employee, x;; must lie within the given lower and upper
bounds, if the employee is part of the workforce, and equal 0 otherwise:

Ligxi < xp <upx; iel,teT. (531d)

Finally, for x; we have:
x € {0,1} iel (5.3.1e)

Model (5.3.1) now states a mixed-integer linear programming formulation (MILP)
of SUAH.

Note that SUAH is closely related to the capacitated facility location problem
(CFLP), if we regard the facilities and destinations of CFLP as the employees and
planning periods of SUAH. However, there are two important differences. First, in
SUAH there is no transportation cost ¢;;. Second, and more importantly, SUAH
has lower (l;;) and upper (u;) bounds on the amount transported from location i to
destination t. Adding these bounds to CFLP increases the complexity. For CFLP
to be feasible it is sufficient to have ) .., wix; > ) ,. d;, whereas for SUAH it
is not.

The multidimensional knapsack problem (MKP) is the special case of (5.3.1)
where [;; = u. For MKP, optimal and near optimal solutions lie in the boundary
of the feasible region, see [129]. For SUAH this also holds, since removing one of
the employees from an optimal solution makes the solution infeasible. If it would
be possible to remove an employee from an optimal solution without giving up
feasibility, a cheaper solution is found, contradicting that the solution found is
optimal. Hence, it is difficult to define a neighborhood with an efficient neigh-
borhood search strateqy, since improved solutions can only be found by removing
one of the employees from the solution and inserting another employee into the
solution. In addition, the values of w;; also have to be updated if the values of
the x; change. In Section 5.5, we show that, if the values of x; are given, the w;;
values can be easily found by solving a network flow problem. While network flow
problems can be solved efficiently, solving many network flow formulations is very
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time consuming. Given these characteristics of SUAH, we choose to apply Cross-
Entropy optimization, which, in contrast to many other meta-heuristics, does not
require a well-defined search neighborhood.

We present a detailed description of Cross-Entropy (CE) optimization in Sec-
tion 5.4. CE has proven to be successful on variants of (single) knapsack problems,
see [82, 113, 230], and on CFLP, see [80]. Given the close relation between SUAH
and MKP, and the success of CE on knapsack problems, we choose to apply the
CE optimization metaheuristic.

5.4 Cross-Entropy optimization

This section discusses the Cross-Entropy optimization (CE) method. As motivated
in Section 5.3, we use CE to solve the staffing under annualized hours (SUAH)
problem. This section gives a general description of the CE optimization technique.
The details of our CE implementation are discussed in Section 5.5.

The CE method was initially developed during the late 1990s [228]. Loose-
ly speaking, CE is a self-learning importance sampling (IS) method. Importance
sampling is a well-known technique for rare event simulation. However, CE is also
applied to many combinatorial optimization problems. A general introduction to
CE, that is more elaborate than presented here, is found in [108, 231]. CE is an
iterative method that generates samples of solutions, and in every iteration based
on ‘good’ solutions, the sampling distribution’s parameters are updated such that
better solutions are generated in the next iteration.

To make this more formal, we closely follow the approach and notation of [108].
In this chapter we consider the general 0-1 binary minimization problem, with
performance evaluation function S : X — R, where X C {0,1}" represents the
feasible region. We want to minimize S over X, i.e, find x* € X such that:

S(x*) = min S(x) = y". (5.4.1)

xeX

CE aims to find x* by iteratively generating random samples from the family of
random variables X"} with probability distribution function f(x;v),x € X,v € V,
where V is a set of parameter values. In this chapter, we let f(x; v) be a pdf of the
Bernoulli distribution:

fv) =] w1 —w)' (5.4.2)

iel
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Now, for x € X,v €V, and y € R, let:

L(y) =P ASIXY) < v} =Eyfispxoneyy = D lspznfxiv), (5.4.3)

xeX

where the indicator function /4 = 1 if A occurs, and O otherwise.

CE iterates over the set V to estimate y* and x*, and the corresponding O-
1 vector v* € V, such that X) = x*. Hence, X') is a deterministic random
variable with all mass at x*. The estimation problem (5.4.3) is often referred to as
the associated stochastic problem (ASP).

For N i.i.d. random variables Xj, ..., Xy distributed as X), an unbiased esti-
mator of [,(y) is:

N

1

N > lisi<y)- (5.4.4)
k=1

However, when {S(X;) < y} is a rare event, a huge number of samples has to be
generated to esttmate l v(¥)- An alternative to this, which is used in CE, is based
on importance sampling (IS). Take a random sample Xj,..., Xy with a different
density g(x) on X, and evaluate [,(y) using the likelihood-ratio (LR) estimator:

N

f(Xe; v )
Z Xk)<Y} Xk) (545)
k=

The best way to estimate [,(y), see [108], is to use a change of measure. The

optimal g*(x) would be:

liswenfxiv)
LWiy) 7

since inserting (5.4.6) in (5.4.5) gives lv/(;) = l,(y).

This is infeasible as g*(x) depends on the unknown [,(y). Furthermore, it is
convenient to choose g*(x) from the family of probability distributions f(x; v). The
idea in CE optimization is to choose v such that the distance between g*(x) and
f(x; v) is minimized. A convenient measure of distance between two densities g(x)
and h(x) is the CE distance, also referred to as the Kullback-Leibler distance.
The CE distance between g(x) and h(x) is defined as:

Dlgx)ihix)) = B [“’9 (m)]

/g(x) log g(x)dx — /g(x) log h(x)dx. (5.4.7)

g'(x) = (5.4.6)
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Minimizing the CE distance between g*(x) and f(x;v) over v is equivalent to:

max/ g*(x) log f(x; v)dx. (5.4.8)
v XEX
Substituting g*(x) from (5.4.6) in (5.4.8) gives:

lrsp<n f(x;
max / lismen 05U 0 vy, (5.4.9)
v Jxex lu(y)

which is equivalent to:

max E, /{sxw)<y} log F(X“); v). (5.4.10)
c <
Given a sample Xj, ..., Xy, which are generated under pmf f(x; u), we can estimate
v from:
4 N
0 = argmax ; Isix<sy Log F(Xe; v), (5.4.11)

where we let § be the (1 — p)-quantile of the performances, i.e., sort the S(X;) on
decreasing value: Sp),..., Sy and let:

fl = 5([(1_,,)/\/“. (5412)

In [108] is shown that, if V is the set of Bernoulli(v) distributions, the CE dis-
tance (5.4.7) is minimized for:

N
o i lspogn Xe
L= N

2 i l{sixo<9y

: (5.4.13)

where Xy ; and ¥; denote the i-th element of X and 7, respectively.

Note that updating rule (5.4.13) appeals to intuition, since it sets ¥; as the
fraction of the number of times that element i is present in the 1 — p sample
quantile. Note that - except for the indicator functions - (5.4.13) equals the
maximum likelihood estimator for 7.

In order to approximate y* and v* we update y and v iteratively as in equa-
tion (5.4.12) and (5.4.13), respectively, by using the algorithmic representation of
CE optimization as in Algorithm 5.1.

In many CE implementations updating rule (5.4.13) is replaced by:

N
o /\Zk:1 lisp <o Xe.i
T, — N

2 k=1 ltspxo<ie}

+ (1= A)orrs, (5.4.15)
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Algorithm 5.1 Cross-Entropy algorithm (for optimization)

1. Let Up = u, for some initial distribution parameter u. Let N denote the
sample size, let d € N\ {0}, and 0 < p < 1 be given. Set T = 1 (iteration
counter).

2. Generate a sample X, ..., Xy from the density f(x; ¥z—1) and compute the
sample (1 — p)-quantile p; of the performances, as in (5.4.12)

3. Use the same sample Xj,..., Xy and choose ¥; € V such that the CE
distance D (f(x; Vz—1), f(x; ¥;)) as defined in (5.4.7) between f(x; ¥,_1) and
f(x; Uz) is minimized.

4. If:
Ve=Vr1=... = Vr-a, (5.4.14)

then stop. Otherwise set T = 7+ 1 and return to 2.

for some 0 < A < 1, in order to prevent the CE method from converging too
quickly [108]. In addition, [103, 186] let A depend on 7, ie., replace A by A,
in (5.4.15), to achieve this. We want to prohibit that CE converges too quickly,
because once an entry of ¥; is fixed to 0 or 1, only sample solutions with (if
the entry is fixed to 1) or without (if the entry is fixed to 0) the corresponding
element are generated. Another way to control the convergence of CE is to let p
depend on 7 [113]. In[103, 186] conditions for A; are presented for the CE method
to convergence to an optimal solution of the combinatorial optimization problem
asymptotically with probability 1. Furthermore, [103] discusses necessary and
sufficient conditions on A; for f(x; V) to converge with probability 1 to a unit mass
located at some solution candidate x.

In the literature several other improvements to CE exist. In [230] it is suggested
to use:

N
S(Xe)! o Xk i
‘,}[ _ Zk:1 ( k) {S(Xk)<p} kvl’ (5416)

it SX) spa<r)
instead of (5.4.13). It is argued in [230] that this updating rule is, in general, at
least as fast and accurate as (5.4.13) and it has a stronger mathematical foundation.
In [80] it is suggested to apply, in every iteration, local search to the best elements
of the sample solution. According to [80], better quality solutions are obtained for
their problem, but at the cost of additional computation time.
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In its basic form CE cannot handle constraint optimization problems, and is used
to solve single objective optimization problems. When applying CE to constrained
combinatorial optimization problems, such as SUAH, the generation of infeasible
solutions has to be prevented. There are two main approaches to deal with this. A
first approach is to penalize infeasibility, see, e.g.,[17, 79, 103]. A second approach
is to repair infeasible solutions, see, e.g., [82, 113]. In our implementation, we
choose to penalize infeasibility and to apply repair functions, see Section 5.5.

5.5 Solution approach

The objective of model (5.3.1) is to select the most cost-efficient set of employ-
ees that is able to cover demand. We use Cross-Entropy (CE) optimization to
solve this problem. For our problem we use CE to select the employees. If the
set of selected employees is known, an easy network flow problem remains, see
Section 5.5.1. Similar approaches are found in, e.qg., [81, 82], where the idea is
to reduce complexity by letting CE intelligently guess which ‘items’ to select.
In Section 5.5.2 we describe how CE is used to select a set of employees, ie.,
determine values for x;. In Section 5.5.3 we discuss how we use feasibility con-
ditions to incorporate demand constraints in the employee selection. However,
since this approach does not necessarily lead to feasible solutions either, which is
needed for practical applications, repair functions are used to guarantee feasible
solutions, see Section 5.5.4. Section 5.5.5 discusses some details of our MaTLAB
implementation of CE.

5.5.1 Annualized hours for given employees

If the values of x; are known, the annualized hours problem is easily solved, since
for given values of x; model (5.3.1) can be rewritten such that there are no lower
bounds on x;;, except for nonnegativity. Let M = {i|x; = 1} and Xt = x;s— iy, 0y =
uit = lig, wi=w; =3 o7 lir and di=d;— > e lir then (5.3.1) reduces to:

find  xu (5.5.1a)
s.t. Y xu>d teT (5.5.1b)
ieM
Y Xu=wi i€M (55.1¢)
teT
0<x¢<iay ieMteT. (5.5.1d)
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Instead of a mixed-integer linear program we now have a linear program, which is
solvable by polynomial time algorithms. Moreover, (5.5.1) is a network feasibility
problem [125, 133], for which special purpose algorithms exist.

5.5.2 Initialization

This section describes how our CE method is initialized. In many CE implemen-

tations that involve binary variables, vy is set to (% % c %) see, e.g, [81, 151].
However, in our implementation we choose to set
d d
Vo = ZtET t L ZtET t ) (552)

Ziel Wi o Ziel Wi

The fraction ) ,.;d¢/} ,c;wi equals the expected number of items needed for
a solution to be feasible, if we ignore per time period demand constraints and
only look at total capacity and total demand. Therefore, every generated solution
has in expectation the number of items needed for a solution to be feasible. This
way, the CE implementation converges faster and the probability to get stuck at
infeasible solutions decreases.

5.5.3 Feasibility conditions

After a set of items is selected, feasibility can be checked by solving (5.5.1).
Although this problem is polynomially solvable, it has to be solved for at least the
best p percent samples in every iteration of the CE algorithm, which is quite time
consuming if it has to be done often.

Therefore, we incorporate two feasibility conditions on the employee selection
of CE. Firstly, the total permitted number of employee working hours should exceed

the total demand:
Y wixi>) dy. (5.5.3)

iel teT

Secondly, the maximum permitted number of employee working hours in every
period t should exceed d;:

Y upxi>d; forteT. (5.5.4)
iel

Unfortunately, feasibility conditions (5.5.3) and (5.5.4) are necessary, but not suffi-
cient. The only sufficient feasibility condition for a network problem that we know
of, is to solve it using a network flow formulation or an LP formulation.
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We incorporate (5.5.3) and (5.5.4) into the CE implementation, by penalizing
violations in the objective function. The objective function is then given by:

S(x) = ZCVQ + B (Zdt - Z WiX; +BzZ (dt - Zuitxi) , (5.5.5)

iel teT iel teT iel

where (x)* = max{x,0} and By, B2, > 0. The first part of the objective function
represents the cost of the workforce, the second and the third part represent
penalties caused by violating (5.5.3) and (5.5.4), respectively.

5.5.4 Repair functions

The approach of Section 5.5.3 does not guarantee solutions to be feasible, even for
large values of B4, B> in (5.5.5) CE might produce infeasible solutions. By adding
a repatr function that ‘repairs’ infeasible solutions, we can guarantee solutions to
be feasible.

For this, we introduce an extension to model (5.5.1) that incorporates slack
variables 0; in the demand constraints as follows:

min Y & (5.5.6a)
teT

st Y xu+0>d teT (5.5.6b)
eM
Y fu=w (€M (5.5.6¢)
teT
0<xy<iay ieMteT (5.5.6d)
0<o, teT. (5.5.6€)

The objective of (5.5.6) represents the demand that the employees in M together
are unable to cover. If this is larger than 0 the solution is infeasible and we invoke
our repair strategy.
For this, let:
t' = argmax o, (5.5.7)
teT

then t’ denotes the index of the demand constraint for which we have the largest
slack. Let:
i
i =argmax{ ——1, 55.8
J &M { uip — iy } ( )
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then, from the set of employees not in M, employee i’ can contribute to covering
the demand in demand constraint t' most cost-efficiently.

Algorithm 5.2 represents the repair strategy we invoke.

Algorithm 5.2 Repair strategy

1. Let M be the solution of CE. If it is feasible: done. Otherwise, go to 2.

2. Let 0 be the solution to (5.5.6). Let t’ be the solution of (5.5.7), and i’ be
the solution of (5.5.8). Let M = MU {i’}. If M’ offers a feasible solution:
done. Otherwise, reiterate using M’.

5.5.5 Software implementation

The CE method is implemented in MaTLAB. For a fair comparison between CE
and (not fine-tuned) CPLEX, @ MATLAB script from [204], designed to solve the basic
multidimensional knapsack problem with CE, is adapted to make it suitable to solve
SUAH. Our adaptations to [204] include incorporating initialization rule (5.5.2),
and modifying the objective function into (5.5.5). In our implementation we choose
to set:

2+2 Ziel Ci

maxmax (l;; + u;)’
icl teT

B =B = (5.5.9)

which is analoguous to the (single) B parameter used in [204], so as to stay
close to the basic CE implementation of [204]. The intuition behind these pa-
rameter values is that if max;e; maxse7 (it + u;t) is small, it is more likely that
solutions are obtained where ) ., u;x; is smaller than d; for some t. To pro-
hibit CE from getting stuck at these solutions we want B4, 8, to be larger for
instances where max;e; max:e7 (lir + uyt) is small. The other way around, when
max;e; maxie7 (it + Uy¢) is larger, By, B> are smaller, since for these instances it is
less likely that solutions are obtained where ) _,_, ujx; is smaller than d;. Deter-
mining good values for By, B, is a trade-off. On the one hand, large B1, B2 make
it more likely to find feasible solutions, but, on the other hand, they make it less
likely to find a (near) optimal solution; larger Bi, B2 ‘push’ CE harder away from
the boundary of the feasible region, where the optimal solutions lie.
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5.6 Experimental results

This section discusses the experimental results. The Cross-Entropy (CE) im-
plementation described in Section 5.5 is compared with a mixed-integer linear
programming implementation (MILP) of (5.3.1), since solving the MILP gives an
optimal solution, which enables us to report on the solution quality of CE.

The MILP instances are encoded as MPS-files and solved using a precompiled
CpLEx 11.0 binary. We let CpLEX stop when the instances are solved to optimality,
that is when the integrality gap is less than 0.01%, or if the solving time exceeds
3600 seconds. We did not perform extensive tuning on the parameters of CpLEX.
The auto-tuner of CpLex did not suggest parameter values that would be useful
in general for solving the SUAH instances. Furthermore, we did no fine-tuning
of CE parameters such that we compare two not fine-tuned implementations. All
experiments are performed on an Intel Centrino Duo CPU 2.20 GHz, 3.0 GB of
RAM.

Section 5.6.1 discusses the instances on which we test both implementations.
After that, Section 5.6.2 and Section 5.6.3, evaluate the solving time and the
solution quality of both implementations, respectively.

5.6.1 Test instances

The implementation is tested on generated instances. We generate multidimen-
sional knapsack problem (MKP) instances that are transformed into SUAH instan-
ces. A multidimensional knapsack covering problem has the objective function as
in (5.3.1a) and it has | T| constraints of the form:

a1ex1 + axexe + .o ayex) 2 d; teT. (5.6.1)

The MKP instances are generated with the method of [90]. The values of a;; are
discrete uniform random numbers from [0,1000]. Furthermore, d; = a) ., ai,
where o is a tightness ratio specifying approximately the fraction of the total
number of items that are needed for a solution to be feasible. We generate problem

instances with the number of variables |/| set to 10,20, ...,100, and the number
of constraints |T| set to 5,10,...,50. For every |/|-|T| combination 30 problem
instances are generated. Just as in [90], we have a = % for the first ten problems

instances, a = 15 for the next ten instances, and a = % for the remaining ten

instances. The objective function coefficients ¢; are generated as:

ait .
P = E — + 500gq; / 5.6.2
c 2 7] + gi i€ ( )
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where g; is a real uniform random number from (0, 1). According to [90] instances
where the ¢; and the a;; are correlated are harder to solve. We generate ten SUAH
instances from every MKP instance by setting l;; = (1 —p)a;; and v = (1+p)a
for p = 11—0, % ..., 1, and setting w; =} _,.; ai. Here, p is the annualized hours
parameter indicating the percentage we are allowed to over-staff or under-staff in
a planning period. In total, we thus generate 10 -10-30-10 = 30000 instances.

We use these instances instead of the instances of [90] that are made publicly
available [39], since our instances better fit with our underlying practical applica-
tion. For SUAH it is typical to have up to 100 employees (variables) and up to
50 planning periods (constraints), e.g., in a planning horizon of one year we have
52 planning periods of one week.

5.6.2 Solving time

This section examines the effect of the number of variables |/|, the number of
constraints | T|, the density parameter ¢, and the annualized hours parameter p
on the solving time of both CE and MILP.

Effect of |/| on solving time

Figure 5.1 shows the effect of the number of variables |/| on solving times of CE
and CpLex for |T| = 40. In the left figure solving times are averaged over a and
p, in the figure on the right medians are computed.
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-o- CPLEX | |-~ CPLEX
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1000 | & 200/
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Number of variables (|/]) Number of variables (|/])

Figure 5.1: Mean (left) and median (right) solving time as function of |/| for | T| = 40

From Figure 5.1, we observe that CpLEX needs far more solving time than CE.
Interesting to note is that for |/| = 40 CpLEX needs on average the most time. We
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think CpLEX is able to relatively quickly obtain a solution for small |/|, since the
number of solutions is limited, and that for larger |/| (|/| > 50) there are many good
solutions, which makes it easier for CpLEX to find one. Also note that the average
solving time of CpLEX is strongly influenced by a small number of instances that
are hard to solve; the difference between CE and CpLEX is smaller when we look
at the medians. We also observe that the CE solving time is almost constant. For
other values of | T|, for which graphs are not shown, similar effects were observed.

Effect of | T| on solving time

Figure 5.2 shows the effect of the number of constraints |T| on the solving time
for |I] = 30. Again, in the left figure solving times are averaged over a and p, and
the right figure shows medians.

700 T T T T T T T T 300 T T
= CE = CE
600 | |-e- CPLEX 1 250 | -e- CPLEX
S 500 | M
g @ 200
@ 400 ]
£ £ 150
23001 2
2 = 100 -
& 200} I
100 | 1 90
l¥—8—8 8 8 &8 &8 8 88 t—&—&t—+u 8 888 —8—™¢
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Number of constraints (| T|) Number of constraints (| T|)

Figure 5.2: Mean (left) and median (right) solving time as function of | T| for |/| = 30

Figure 5.2 shows that both the mean and median solving time of CPLEX in-
creases with |T|, which is caused by CPLEX requiring more computation time per
simplex iteration for increasing number of constraints. For CE both the mean and
the median solving time stay about the same when |T| increases, which is logical
since | T| only influences the computational effort needed to compute (5.5.5), which
is, from a computational point, only a minor part of the CE implementation.

Effect of @ on solving time

Table 5.1 shows the effect of the density parameter a on the solving time.
Table 5.1 shows CE needs the most time for a = % For these instances about

half of the total items are selected in the optimal solution, and the number of
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Table 5.1: Effect of a on solving time

solving time CE solving time CPLEX
a min  max mean median min max mean  median

s 01 37 0.9 0.7 0.0 3600.0 4631 19.8
201 55 1.1 0.9 0.0 3600.0 2931 71
3 01 4.1 0.9 0.7 0.0 3600.0 98.1 4.2

ways to select x items out of a set of y items is the largest for x = %y. Hence, in
expectation, CE needs more iterations before no improvements are found anymore.
The solving time CpLEX needs decreases for increasing a. For smaller « less items
are selected in the optimal solution, which implies a smaller objective function
value and hence the margin for the integrality gap is smaller. We think this makes
it harder to find a solution.

Effect of p on solving time

Figure 5.3 shows the effect of the value of the annualized hours parameter p on
the solving time. In the left figure solving times are averaged over |/|, |T], and «a,
and in the right figure medians are computed.
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Figure 5.3: Mean (left) and median (right) solving time as function of p

We observe that the MILP instances are solved faster as p increases. We think
this is a consequence of the larger difference between [;; and u;; for larger p. This
makes the bounds on x;; less tight, making it easier to find a solution. For CE both
the mean and median solving time remain approximately the same for increasing
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p. This is logical since the computational effort of CE is independent of the values
of l;; and u;.

Unsolved MILP instances

Table 5.2 shows, for every |/|-| T| combination, the number of MILP instances for
which CpLEX is unable to find an optimal solution within an hour.

Table 5.2: CpLEX unsolved instances

|

|T| 10 20 30 40 50 60 70 80 90 100
5 0 0 0 1 0 0 0 3 1 4
10 0 0 0 M 5 4 5 7 0 1
15 0 0 0o 13 M 14 7 17 21 12
20 0 0 1 27 14 18 21 12 9 6
25 0 0 4 40 27 16 18 13 23 9
30 0 0 11 68 24 20 17 27 25 24
35 0 0 16 69 26 23 22 30 26 12
40 0 0 19 103 28 26 31 23 15 20
45 0 0 24 91 32 33 43 30 17 28
50 0 0 24 91 32 39 52 31 33 38

For small |/| (|/] < 30) and small | 7| (|T| < 10), CpLEx solved most instances
within the hour. However, for larger |/| and |T| many instances are not solved
within the hour. Interesting to note is that for |/| = 40 CpLEX has the most unsolved
instances. We think CpLEX is able to quickly obtain a solution for small |/] since
the number of solutions is limited, and for larger |/| there are many solutions,
which makes it easier to find a solution.

5.6.3 Solution quality

This section compares the quality of the solutions produced by CE and CpLEx.
The solution quality is defined as the objective value of the solution divided by
the linear programming relaxation solution. For less than 1% of the instances CE
produces an infeasible solution. These instances are ignored in the comparisons.

The largest observed integrality gap for CpLEX is 9.6%. The average and median
integrality gap are 0.06% and 0.01%, respectively. The worst observed performance
of CE is 44.8%, which is relatively large, however the average and median are
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0.77% and 0.12%, respectively. In practice, the error in the input data is likely
to be larger. Excluding the solutions for which the repair function needs to be
applied, the worst performance of CE compared to the relaxation is 16.2%. More
advanced repair functions probably improve on this worst performance figure.

Effect of |/| and |T| on solution quality

In Figure 5.4, solution qualities are averaged over a and p. The left figure shows
the effect of the number of variables |/| on the solution quality for |T| = 15, and
the right figure shows, for |/| = 30, the effect of the number of constraints |T| on
the mean solution quality.
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Figure 5.4: Mean solution quality as function of |/| for |T| = 15 (left) and as function of
|T| for |/| = 30 (right)

From Figure 5.4, we observe that neither the value of |/| nor the value of |T|
has a clear effect on the solution quality. Although we observe that the solution
quality of CpLEX is on average better, the effects are small.

Effect of @ on solution quality

Table 5.3 shows the effect of the density parameter a on the solution quality. For
each value of a the best, worst, mean, and median solution quality are shown.
As Table 5.3 shows the solution quality increases as a increases if looking at
the worst and mean solution quality. We think this is caused by the fact that for
larger o more items need to be selected in the optimal solution, which gives more
freedom in the problem instance and makes it easier to find a good solution.
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Table 5.3: Effect of @ on solution quality (integrality gap)

CE CPLEX
a best  worst mean  median best  worst mean median

025 0.0% 448%  1.3% 0.2% 0.0% 9.6%  0.13% 0.0%
050 0.0% 23.0%  0.6% 0.1% 0.0% 27%  0.03% 0.0%
0.75  0.0% 18.3%  0.4% 0.1% 0.0% 1.0%  0.01% 0.0%

Effect of p on solution quality

In Figure 5.5, solution qualities are averaged over |/|, |T
function of the annualized hours parameter p.
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Figure 5.5: Mean (left) and median (right) solution quality as function of p

From Figure 5.5, we observe that the solution quality is better for increasing
p for both CE and CpLEx. We think this is a consequence of the larger difference
between [;; and uj¢ in the instances where p is larger. In these cases, the bounds
on x;; are less tight. Provided that total capacity exceeds total demand, this makes
it easier to find a solution, since there are less restrictions on the distribution of
total capacity over all planning periods.

5.7 Conclusions and discussion

This chapter has studied the staffing under annualized hours (SUAH) problem.
SUAH determines the optimal contract-mix of a workforce while applying annual-
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ized hours. We have investigated the potential of Cross-Entropy (CE) optimiza-
tion, a technique known from rare event simulation, to solve the SUAH problem.
In contrast to other metaheuristics, CE does not require a well-defined neighbor-
hood structure. Since it is not trivial to define an efficient neighborhood structure
for SUAH, which is a key determinant for the success of most metaheuristics, we
prefer CE over other metaheuristics. We have implemented CE in MaTLAB. Our
CE implementation includes a penalty function and a repair function to gquarantee
solutions to be feasible. In addition to the CE implementation, we have modeled
the SUAH problem as a mathematical program that is solved by CpLEX.

For practical applications, opportunities for improving our CE implementation
exist. First, simulations to optimize the penalty parameters of the model could
be run. In addition, improved or alternative repair functions may be implemented.
Second, updating schemes for the model parameters A;, p; and N; could be used.
In [103, 113, 186] some success with this is mentioned, and conditions on A, for
asymptotic optimality of CE are derived in [103, 186]. We have implemented
updating rule (5.4.16) of [230], but this had no noticeable positive effect for our
CE implementation.

We have generated 30000 test instances. For most instances CPLEX produces
the best solution, but CE solves the instances much faster than CpLEx. On average,
CE is able to produce high-quality solutions in matters of seconds, whereas CPLEX
requires a couple of minutes. Moreover, for 1738 instances (5.8%), CPLEX is not
able to find the optimal solution within our time limit of one hour. Especially for
larger instances that are in size comparable to real-life instances, CPLEX requires
more time to solve the instances, if solved at all within an hour. This makes our
CE implementation well-suited for data validation and scenario-analyses, such as
evaluating the consequences of vacation requests and last-minute illnesses. In
addition, for applications that have the SUAH problem, or a related problem, as a
subproblem it is worthwhile to consider CE to solve these subproblems.
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CHAPTER 6

Shift Rostering Using Decomposition: Assign
Days Off First

6.1 Introduction

In many practical situations, scheduling days off is a separate step in the shift
assignment process. For employees, it is preferable or even requisite, see [198],
to know their working days a long time ahead, so they can plan their leisure
activities. The exact working hours are not essential to know in the long term. In
addition, vacation requests can be taken into account long before the actual work
schedules are created, which may alert the planner for possible capacity problems.

In this chapter, we study a decomposition approach for the shift rostering
problem, that first solves the days off scheduling problem, which assigns working
days and days off to a set of employees, and secondly assigns specific shifts, e.g.,
early or late, to working days in the days off schedule. In addition, we study an
extended model that includes night shifts in the first phase of the decomposition.
These decomposition methods reduce the complexity of the shift rostering problem
by decomposing the problem into subproblems that are easier to solve. Since a
decomposition approach implies a possible loss of solution quality, we want to
mitigate this effect by solving the subproblems to optimality. To achieve this, we
model the subproblems using mathematical programming formulations, which are
solved using CPLEX.

The contribution of this research is an analysis of the potential and pitfalls of
days off decomposition. We compare two approaches: one with and one without
night shifts included in the first phase of the decomposition. To let the decomposi-
tion be the only source of loss in solution quality, both phases of the decomposition
are solved to optimality. The decomposition approaches are evaluated on 25 public
nurse rostering benchmark instances [105]. The proposed mathematical programs
may also be used to only solve the days off scheduling part, for practical situations
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where working days should be scheduled a long time ahead.

This chapter is structured as follows. First, Section 6.2 discusses the related
literature, and after that Section 6.3 presents a problem description. In Section 6.4,
we present our decomposition approach, and Section 6.5 discusses computational
results. Section 6.6 presents the conclusions.

6.2 Literature review

There is a vast amount of literature on personnel scheduling, see Chapter 3. Within
the personnel scheduling literature days off scheduling has received considerable
attention. In this section, we review the days off scheduling literature and indicate
how the decomposition approach as proposed in this chapter contributes to the
existing literature.

In the literature there has been a particular focus on cyclic days off scheduling.
Algorithms to determine weekly repeating days off schedules for which employees
have in each week 5 consecutive working days and 2 consecutive days off are
proposed in [11, 12, 27, 36, 37, 41, 227, 246]. The objective is to determine the
minimum size workforce or the minimum cost workforce. These days off schedu-
ling problems are polynomially solvable, since they can be modeled as network
flow problems [37]. The research in [28] extends on this by including part-time
workers, which may work less than 5 consecutive shifts and [13] determines the
minimum workforce in the situation where in each 3-week period an employee has
14 consecutive working days and 7 consecutive days off.

Research presented in [31, 55, 153, 174] determines the minimum workforce
size for cyclic days off scheduling with various days off policies and workforce
demand being N on weekdays and n during weekends. The research in [120] ex-
tends on this by implying that an employee has at least A out of B weekends off,
and [122] include part-time workers who work fewer shifts than full-time workers.
The research in [30] also includes constraints on the number of working weekends,
but assumes staff requirements are the same each day, whereas [73, 75, 209] allow
staff requirements to be different each day. The research in [185, 226] first deter-
mine a set of schedules, given a set of constraints, which are afterwards assigned
to employees, and [121, 156, 196] determine the minimum cost workforce for hier-
archical multi-skilled workforces. With hierarchical skills there is an ordering of
skills such that a higher skilled more expensive worker can always do the work of
a lower-skilled less-expensive worker.

Acyclic days off scheduling has also received considerable attention. A days
off scheduling problem with a scheduling horizon of one year, enforcing constraints
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on the number of shifts per week and during the scheduling horizon, is considered
in [21, 22, 159]. The research in [14, 191] consider constraints on the number
of (consecutive) working days and days off under the objective to minimize the
workforce size, whereas [119] minimizes the workforce cost, and [40, 188] minimize
the penalty implied by violations of scheduling criteria. A feasibility problem
under numerous days off scheduling constraints is considered in [104].

In this chapter, we solve the shift rostering problem by first solving the days
off scheduling problem and then assigning shifts to employees on their working
days. This is also done in [38, 107, 131]. The research in [38] uses heuristics
to solve the subproblems, whereas we use mathematical programming to get op-
timal solutions for the subproblems. In [107, 131] the subproblems are solved
by enumerating days off patterns and solving partitioning problems. In [107] the
days off scheduling problem is solved to optimality, however the shift assignment
phase is not necessarily solved to optimality. Due to the heuristic nature of their
methods, [38, 107] include a rescheduling method in their approaches. In [1] the
shift rostering problem is decomposed into three phases: days off assignment,
night shifts assignment, and morning and evening shift assignment. Each phase
is solved to optimality. Our approach integrates this first and second phase. Un-
fortunately, [1] does not report any computational results. The research in [205]
also decomposes the shift rostering problem in three phases. First, employees
that are going to work night shifts are determined, second the days off schedule
is generated, and third shifts are assigned to employees on working days. In [205]
two alternative local search methods are compared to solve these phases.

Some authors combine days off scheduling with shift scheduling [25, 42]. Shift
scheduling determines the set of shifts that should be assigned to employees. The
research in [25, 42] start with shift scheduling, then generate a days off schedule,
and finally assign shifts to employees on their working days.

6.3 Problem description
This section describes the shift rostering problem (see Section 6.3.1) and the set

of benchmark instances to which we apply our approach (see Section 6.3.2).

6.3.1 The shift rostering problem

The basic data in the shift rostering problem that is considered in this chapter is
given by:
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A time period, discretized in a set of time slots T, indexed by t. In the
chapter, the length of a time slot t is a day, and we consider a planning
horizon of multiple weeks.

A set of employees I, indexed by i.

A set of skills J, indexed by j. The set of skills of employee i is represented
by Ji € J.

o A set of shift types, K, indexed by k. A shift type is a time interval which
starts at a fixed time during the day and in which work is performed. Em-
ployees are only allowed to perform shifts for which they are sufficiently
skilled.

o A set of shifts. A shift is of one of the shift types with a given start day.

The objective of the shift rostering problem is to assign the set of shifts to the set
of employees, while respecting a number of constraints:

e Single shift per day. Each employee works at most one shift per day.

e Cover requirements. The problem instance describes per day a minimum,
maximum, or preferred number of shifts on a day.

e Employee constraints. Each employee’s shift assignment must satisfy a
specified set of labor rules. In addition, employee specific work agreements
and requests must be taken into account as well.

We formulate the shift rostering problem as a mathematical program. Since the
main decision is to assign on each day a shift type to an employee, it is natural
to introduce the binary variables x;; representing this decision:

1 if employee i performs shift type k on day t
Xikt = (6.3.1)
0 otherwise

The constraint that an employee is assigned to at most one shift on each day
translates into:
Zx,—kt <1ielteT (6.3.2)
kek
Formulating all constraints appearing in the benchmark instances as linear con-
straints is tedious but straightforward. The details of these formulations are not
described here. However, to provide the reader insight in these formulations,
Section 6.4.2 discusses several constraints for the days off scheduling problem.
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6.3.2 The benchmark instances

The Employee Scheduling Benchmark instances, see [105], were collected over a
period of several years by a number of researchers investigating the shift rostering
problem. They represent a diverse collection of challenging, real-world instances.
Because they were drawn from many sources they vary in dimensions such as
the number of staff, shifts types, skills and length of the planning period. More
challengingly from a modeling and computational aspect however, they also vary
in the number and types of constraints present in each instance. This is due to
their real-world nature and the fact that each employer has different requirements
often affected by national legislation, union or industry specific labor legislation.
Each instance is often further complicated by the presence of employee specific
contracts such as part-time or night shift workers, and employee specific requests
for, e.qg., days off. For detailed information, we refer the reader to [105] where full
details are available on each specific instance.

At this moment there are 27 instances available, of which 25 are used in
this research, see Table 6.1. Table 6.1 provides an overview of the instances’
dimensions, i.e.,, the number of employees, the number of shift types, and the
number of days in the scheduling horizon. In addition, Table 6.1 provides the best
known objective function values (column ‘best’) for these instances. The best known
solutions are known to be optimal in all cases except MER'. The best solutions,
found by different researchers and different techniques, are also available at [105].
The instance Musa is not used in our research, as it contains only 1 shift type,
and HEDO1 was not included because it uses conditional constraints, which we
did not implement.

6.4 Solution approach

This section outlines our solution approach to the shift rostering problem. We solve
the shift rostering using a decomposition that first solves a days off scheduling
problem. In days off scheduling only days off and working days are determined,
so employees are not assigned to specific shifts. The idea behind the decomposi-
tions is that the position of the stints, L.e., the consecutive days with work for an
employee, is dominant for the shift rostering problem; once the working days are
known, we hope that for each working day a shift type may be chosen such that
the remaining shift rostering constraints are met.

TFor MER a lower bound of 7079 was established.
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Table 6.1: Test instances retrieved from the Employee Scheduling Benchmark Data Sets

Instance employees  shift types days  best
Azaiez 13 2 28 0
BCDT-Sep 20 4 30 100
BCV-3.46.2 46 3 26 894
BCV-4.131 13 4 29 10
CHILD 41 5 42 149
ERMGH 41 4 48 779
ERRVH 51 8 48 2001
GPost 8 2 28 5
GPost-B 8 2 28 3
Ikegami-2Shift-1 28 3 30 0
Ikegami-3Shift-1 25 4 30 2
Ikegami-3Shift-1.1 25 4 30 3
Ikegami-3Shift-1.2 25 4 30 3
LLR 27 3 7 301
MER 54 12 48 7081
Millar-2Shift-1 8 2 14 0
Millar-2Shift-1.1 8 2 14 0
ORTECO1 16 4 31 270
ORTEC02 16 5 31 270
Ozkarahan 14 2 7 0
QMCA1 19 9 28 13
QMC-2 19 3 28 29
SINTEF 24 5 21 0
Valouxis-1 16 3 28 20
WHPP 30 3 14 5

In the decomposition, the days off schedule is used as input to assign employees
to specific shifts. Of course, employees may only be assigned to shifts on working
days in the days off schedule. First, Section 6.4.1 outlines how we formulate and
solve the days off scheduling problem for the benchmark instances described in
Section 6.3.2. Section 6.4.1 describes an extension to our decomposition that also
includes night shifts in the days off scheduling problem.

In order to apply these decompositions, the shift rostering instances have to
be reduced to days off scheduling instances, which is discussed in Section 6.4.2.
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6.4.1 Relations between the models
Days off scheduling

The basic decision in the days off scheduling problem is to decide for each day in
the schedule of an employee whether it is a working day. This is represented by
the variables y;;:

1 if employee i works on day t

Yir = . (6.4.1)
0 if employee i has a day off on day ¢t

The basic relation with the shift rostering problem is:
> xur=uyy i€lteT. (6.4.2)
kek

The second phase in the decomposition is exactly the original shift rostering prob-
lem with the additional relations of equation (6.4.2).

Night shift scheduling

Constraints on night shifts can lead to very specific constraints on the position
of stints, see also [134]. An example is a required separation of at least 2 days
between two stints if the first stint ends with a night shift. Hence, we also inves-
tigate an extension of the basic days off scheduling model in which the working
day (yi = 1) is specialized to working a selected shift type, which we call the
night shift (N). For this, we introduce the binary variable z;:

1 if employee i works shift type N on day t
Zit = (6.4.3)
0 otherwise

In the days off scheduling problem, we add the following constraints:

zu <y L€LteT, (6.4.4)
and for the shift rostering problem the next constraints are added:

xinve =2z i€ teT. (6.4.5)

Equation (6.4.4) expresses that an employee can only work a night shift on working
days. Equation (6.4.5) expresses that the choice for a night shift in the first phase
should be respected in the second phase.

We refer to the decomposition approaches as:
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(On, Off): Assigns working days and days off in the first phase.
(Day, Night, Off): Assigns working days, night shifts, and days off in
the first phase.

6.4.2 Modeling the constraints

From a higher level, we can say that we reduce the original shift rostering problem
to a shift rostering problem with 2 shift types (On, Off) and 3 shift types (Day,
Night, Off), respectively. Hence, to solve the first and second phase of the de-
composition similar mathematical programming formulations can be used, where
the work schedules created in the second phase should obey the decisions of the
first phase. Although the mathematical programming formulations are similar, the
reduction in the first phase is not always straightforward. Our basic principle is
to reformulate the constraints of the shift rostering instances to necessary con-
straints for the days off scheduling problem; in this way we are able to assess
the consequences of the decomposition in a uniform way. The next subsections
describe how different types of constraints are handled in the days off scheduling
problems.

Requests and preassigned shifts

Employees may have preassigned shifts, requests for specific shift types on specific
days, or requests for days off. Work requests or shift on requests result in working
days in the days off scheduling problem. Shift off requests are ignored, since the
employee might work another shift on the same day. For the implementation it is
important to incorporate preassigned shifts and requests in the possible matches
of the pattern constraints (see below). For example, if there is a preassigned shift
we can evaluate whether this shift matches a certain pattern or not, even in the
days off scheduling phase.

Cover requirements

Cover requirements express the minimum and maximum number of employees that
are required to be available either per shift type or per time interval. In the latter
case, shift types assigned to the employees should be such that these limits are
respected.

In both cases the information can be more detailed expressing that the em-
ployees that are required to be available should have certain skills. However, em-
ployees having certain skills can count for more than one skill cover requirement
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at the same time. To determine the minimum and maximum number of available
employees that satisfy the cover requirements, we formulate a small mathematical
program. These bounds express per day the bounds on the number of employees
with certain skills that are required to be available. For the details, the reader is
referred to [259].

Pattern constraints

Pattern constraints express a wide variety of constraints for individual schedules.
A pattern consists of a description of sequences of shifts that form a match for
the pattern. Moreover, the pattern contains information for which period of the
schedule the pattern needs to be considered, e.g., for the full scheduling period or
only the periods starting on Saturday. We illustrate this by an example that is
taken from the XML representation of the Azaiez instance:

<Match>
<Max>
<Count>4</Count>
<Weight>10000</Weight>
</Max>
<Pattern>
<StartDay>Saturday</StartDay>
<Shift>$</Shift>
</Pattern>
<Pattern>
<StartDay>Sunday</StartDay>
<Shift>$</Shift>
</Pattern>
<Match>

The first pattern is for Saturdays; each day that an employee has any shift
(‘'$’) on a Saturday we have a match. Similarly, the second pattern is for Sundays.
Hence, the match counts the number of Saturdays and Sundays on which a shift
starts. In the Azaiez instance, we see that an employee should do at most 4 (Count)
weekend shifts; violation of this constraint results in a penalty of 10000 (Weight)
per extra shift. Pattern constraints seem complicated at first, but they are able
to model a wide variety of constraints that appear in practice. They can model
constraints on, e.g., the maximum number of shifts per week, shift sequences, or
the minimum number of consecutive shifts.

If a pattern constraint is specified for the any shift type (‘$’), we can use it in the
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days off schedule. Pattern constraints specified for a specific shift type cannot be
incorporated in the construction of a days off schedule. In the case of (Day, Night,
Off), we can also incorporate pattern constraints for the night shift as well. For
example, it is common that there are constraints on the total number of night shifts
and the length of night shift sequences. Moreover, night shifts are usually at the
end of a stint, which can pose some restrictions on its position, for example that
such stint should not end on Friday.

Workload requirements

Workload requirements describe the number of hours an employee should work in
the planning period. Clearly, these are difficult to use in the days off schedule if
different shift types have different lengths. Since we use only necessary conditions,
the best we can do is to calculate upper and lower bounds on the working days,
and add those conditions as constraints to the mathematical program. For example
if employee i has a maximum workload of 120 hours, and the shortest shift contains
7 hours of work, then we add the constraint

7-) Yy <120,

teT

implying that the employee will have at most 17 working days.
In the second phase of the decomposition, we have full information, so that we
can use the correct workload requirements.

6.5 Results

To evaluate our decomposition approach, we solve the mathematical programming
formulations of the shift rostering instances in Table 6.1 using CpLex 12.2 with the
time limit set to one hour on a Dell Optiplex 990 (64-bit, 3.4 GHz, 4 GB RAM, 8
cores). As the objective value is integer, we set the absolute gap to 0.999 without
loosing the optimality guarantee. The two phases of the decomposition are also
solved using CpLEX, with the time limit set to 30 minutes for each phase.

CpLEx finishes with 4 different statuses: status 101 and 102, indicating that an
optimal solution was found, status 107, indicating that the time limit was reached
without (guaranteed) optimal solution and status 109 indicating that CpPLEX ran
out of memory?.

Zsee http://www-01.ibm.com/support/docview.wss?uid=swg21399943
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Table 6.2: Results on instances with 2 shift types

Direct (On, Off)

time % time
Instance cost  (sec) cost  saving
Azaiez 0 7.4 6 76.7
GPost 5 117 4002  96.4
GPost-B 3 428 2002 925
Millar-2Shift-1 0* 0.2 0*  66.2
Millar-2Shift-1.1 0 0.2 0* 61.6
Ozkarahan 0t 0.2 800 90.4
Ozkarahan (skills) 0* 01 0+ 87.2

Table 6.2 and Table 6.3 present results for instances with 2 shift types and
instances with more than 2 shift types, respectively. To the instances with 2 shifts
types only the (On, Off) approach is applied, since the (Day, Night, Off) approach
would be the original shift rostering problem. For 15 instances the direct approach
finds the optimal solution within one hour; these are the solution values that are
marked with * in the second column. Moreover, 12 instances are solved within one
minute, see third column.

First, we analyze the results of the (On, Off) decomposition approach to the
instances with 2 shift types, and after that we analyze the results of our decom-
position approaches to the instances with more than 2 shift types.

Instances with 2 shift types

The fourth column in Table 6.2 gives the solution values of the (On, Off) decom-
position, while column 5 states the time saving, i.e., 100% minus the percentage of
the time needed to solve the decomposition divided by the time needed to solve
the direct approach. For example, the time saving of 96.4% for the GPost instance
indicates that the decomposition is solved in 4.2 seconds (3.6% of 117 seconds).
We observe that the decomposition is solved faster than the direct approach.
However, except for the Millar instances the results are not competitive. The rea-
sons are slightly different for each instance. The Azaiez instance requires separate
stints for day shifts and night shifts, information that can not be incorporated in
the (On, Off) decomposition. The GPost instances require that some specific stints
end at specific days, for example (sub)stints of night shifts should end on specific
days, see [134]. The Ozkarahan instance contains skills in the cover requirements,
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which is modeled by certain forbidden patterns for employees. If we remodel this
using skills for the employees then the decomposition finds the optimal solution,
see the final row in Table 6.2.

These two aspects, the special role of night shifts and the complication with
skills, reappear in the instances with more than two shift types. The special role
of night shifts motivated us to extend the (On, Off) approach to the (Day, Night,
Off) approach.

Instances with more than 2 shift types

For the instances with more than 2 shift types, the results of both decomposition
approaches are presented in Table 6.3. Again results are compared with the direct
approach. The first 5 columns in Table 6.3 are the same as the five columns in
Table 6.2. Column 6 indicates the shift that is chosen as ‘night shift. For two
instances (BCV-3.46.2 and QMC-1) choosing N as the night shift did not give the
best result. For these instances, we added extra rows for the ‘night shift’ choice
that gave the best solution in the decomposition approach. Instance BCV-4.13.1
does not have a night shift at all, and choosing shift DH as the ‘night shift’ leads
to the optimal solution. Column 7 and 8 give the result of the (Day, Night, Off)
decomposition and the time saving, respectively.

For 9 instances, the direct approach finds an optimal solution, whereas the
decomposition finds optimal solutions for 3 instances. Note that in the cases where
the optimal solution is not in the direct approach, and the time listed is less than
3600 seconds, the process ran out of memory. The decomposition yields better
solutions in 5 instances, and in 2 instances the solution quality is comparable
(LLR and QMC-2). For 9 out of 19 instances the decomposition approach gives
satisfactory solutions. The time saving is in most cases substantial: in 11 of
the instances the saving is 90 percent or more. However, for 3 instances the
decomposition takes more time and yields worse solutions. Instance MER is the
biggest instance. On this instance none of the models give a satisfactory result.
The direct model ends after 628 seconds (out of memory). The decomposition
models run longer without going out of memory, explaining the fact that there is
a negative time saving here.

In several instances (BCV-3.46.2, ERMGH, ERRVH, all Ikegami-3Sh instances,
and MER) the (On, Off)-approach yields better solutions than the (Day, Night,
Off)-decomposition. In Sections 6.5.1 and 6.5.2, the decomposition approaches are
analyzed in detail.
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Table 6.3: Results on instances with more than 2 shift types

Direct (On, Off) (Day, Night, Off)

time % time  night % time
Instance cost (sec) cost saving  shift cost  saving
BCDT-Sep 104539 3602 104229 99.9 N 2350 85.2
BCV-3.46.2 894 535 1215 99.7 N 3430 82.8
BCV-3.46.2 - - — - L 2374 99.8
BCV-4.131 10* 1.9 17 659 DH 100 54.2
CHILD 149* 47 5066 86.9 N 3847  89.9
ERMGH 779 1.7 929 27.9 N 1116 -119.0
ERRVH 2204 385 12832 97.9 N 22796 913
Ikegami-2Sh-1 0* 27 4316 97.7 N 0* 231
Ikegami-3Sh-1 110 3601 807 90.8 N 3884 99.8
Ikegami-3Sh-1.1 6 3601 994 94.8 N 2728  90.8
Ikegami-3Sh-1.2 23 3602 994 90.8 N 1960 854
LLR 301* 1.2 312 80.2 N 308 926
MER 56561 628 122022 -187.0 N 142133 -16.8
ORTECO1 3527 1365 2270 94.1 N 280 924
ORTEC02 2836 2385 1275 96.5 N 275 965
QMC-1 13* 3.2 29046 77.7 N 21070  38.8
QMC-1 - - — - (0] 177  86.9
QOMC-2 29 04 1045 30.8 N 33 -921
SINTEF 0* 1.6 12202 77.9 N 17 779
Valouxis-1 140 1461 20* 64.5 N 20 939
WHPP 3008 155 16000 99.5 N 3001 777

6.5.1 Assessment of the decomposition approaches

In this section we investigate the quality of solutions produced by the decomposi-
tions approaches. Basically there are two orthogonal explanations for poor quality
solutions of the decomposition approach:

e The essence of the instance could be caught by days off scheduling. Hence
some information, hidden in a combination of factors, was not taken into
account in the implementation of the days off scheduling problem. A way to
improve this is to reformulate certain constraints, or reformulate the instance,
such that the solutions we are interested in, still correspond to low costs.
This is instance-dependent, and difficult to automate.
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Table 6.4: Analysis of instances

Instance aggr shift cover night seq run
BCDT-Sep \% X X
BCV-3.46.2 X DH X X
BCV-4.131 DH

CHILD X ET X
ERMGH X X
ERRVH X
Ikegami-3Shift-1 X 0] X X X
Ikegami-3Shift-1.1 X 0] X X X
Ikegami-3Shift-1.2 X 0] X X X
LLR

MER X
ORTECO1 X
ORTEC02 \% X
Ozkarahan X

QMCA1 0]

QMC-2 X
SINTEF X
Valouxis-1 X

WHPP X X

e The essence of the instance is lost in the days off schedule. The instance
may contain aspects that can not be handled in the days off schedule and
are of decisive importance. The night shift was such an aspect which led
to the (Day, Night, Off)-approach. Other aspects are shifts with specific
requirements, cover requirements with skills, and strong preferences for shift
sequences.

Our findings are summarized in Table 6.4. The contents of the columns ‘aggr’,
‘shift’, ‘cover’, ‘night’, 'seq’ and ‘run’ are addressed in Section 6.5.2.

6.5.2 Detailed analysis of the results

Aggregate constraints

The ‘%’ in column ‘aggr’ of Table 6.4 indicates that a set of constraints in the
instance was taken together to an equivalent instance with one aggregated con-
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straint. Many instances contain a number of constraints expressing that the night
shift can not be followed by shift types E, or D, or L, etc. The aggregated constraint
expresses that the night shift can not be following by the shift group consisting of
the types E, D, L, etc. In our tests we used these aggregated versions which are
also available at [105].

Special shifts

Several special shifts appear in the instances, which usually complicate the days
off scheduling. There are two classes of these shifts:

e Absence shifts. These shifts will not contribute to the cover requirements,
but can count as work (in the Ikegami instances and ORTECO02) or not (QMC-
1 and BCDT-Sep). The cover requirements on day level (see Section 6.4.2)
can be adjusted for these shifts. However, there might exist patterns for all
shifts, except the absence shifts, for example: “A night can only be followed
by a night shift or a special shift”. As a consequence we lose these patterns
in the first phase of days off scheduling, which for the example will lead to
scheduling night shifts in the middle of stints.

e Skilled shifts. The BCV instances and CHILD contain shifts that should
preferably be assigned to specific employees; information that can not be
included in the first phase of days off scheduling. Consequently we create
stints for these specific employees that do not match these shifts. In BCV-
4.13.1 we see that the DH shift type gives the best result in the (Day, Night,
Off)-approach; remember that BCV-4.13.1 does not contain a night shift.

Cover requirements

Section 6.4.2 described how cover requirements in combination with skills or time
units are handled. Unfortunately this is not always the best approach. In par-
ticular, the lkegami instances contain complicated skill cover requirements and in
combination with the strong preferences on shift sequences the results are unsat-
isfactory in these instances. Indeed the cover models we solve to calculate the
number of required employees might lead to the same group of employees for all
days, which unfortunately will not be feasible to schedule. On the other hand,
we have introduced more skill details in the cover requirements of the instance
Ozkarahan, leading to a better result on that instance, see Section 6.5. These
covers are related to skills for disjoint groups of employees, which explains why it
works very well here.
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The night shift (reprise)

One of the main conclusions of this study is that night shifts need special attention.
However, it is sometimes difficult to incorporate all effects of night shifts. In
particular, several instances allow the night shift to be followed by some specific
other shift (a leave shift, a late shift or another night shift), see also 6.5.2. In such
cases it might be better to ignore the night shift, and use the (On, Off)-approach
instead, such as in BCV-3.46.2, ERRVH and the lkegami-3Shifts cases.

Shift sequences

Usually there are patterns describing which shift sequences are preferable. In
some cases the violation of these preferences can not be avoided in the second
phase of the decomposition, for example (again) in the lkegami-3Shifts cases.

Run aborted

As highlighted there are some instances where the (Day, Night, Off)-approach
stopped before reaching optimality. In these cases the run was aborted, due to the
time restriction or because of running out of memory. For the instance MER none
of the approaches finds a reasonable solution. Due to the memory requirements
the direct approach ends after 628 seconds, explaining why the decompositions
take longer. In some other instances (ORTECO1 and ORTECO02) the solver almost
reached optimality, or at least better solutions than the direct approach (BCDT-
Sep and WHPP).

6.6 Conclusions

We studied the effects of solving the shift rostering problem by decomposition
approaches. The first approach, (On, Off), is a two-phase decomposition approach
that first assigns employees to working days and days off, and secondly assigns
employees to shifts on the working days. The second approach, (Day, Night,
Off), additionally includes night shifts in the first phase of the decomposition.
Both phases of the decomposition approaches are solved using ILP, and evaluated
using public shift rostering benchmark instances. The results of the decomposition
approaches are compared against solving an ILP formulation of the shift rostering
problem directly.

We see that the decomposition has a large impact on the solving time: for
most instances the solving time is reduced by more than 80% or 90%. However,
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the solutions do not give such a clear answer. One can roughly say that in 1/3
of the instances the (On, Off)-approach gives good results, in 1/3 of the instances
the (Day, Night, Off)-approach gives good results, and in 1/3 of the instances this
decomposition does not give competitive results. Especially for the (Day, Night,
Off)-approach we have to pay attention to problem specific aspects.

We discussed several improvements for our implementations. Significant im-
provements could be obtained by aggregating scheduling constraints and by alter-
native modeling of skill-related constraints. This remodeling enabled us to effec-
tively consider these constraints in the first phase of the decompositions resulting
in improved overall results. Moreover, in our approach we currently use necessary
constraints but including additional, stronger, constraints may also improve the
results.

Since the first phase usually has multiple optimal solutions, we analyzed the
effect different solutions of the first phase had on the outcome of the second phase.
This had no significant positive or negative effect on the originally obtained so-
lutions, which implies that the presented results are a representative sample. In
view of the observation that CpLEX solves 15 instances to optimality within one
hour, it is in some situations easier to generate the complete work schedule with-
out decomposing the problem, and use this to publish the days off schedule, as
suggested in [25, 42].

In general, we conclude that applying the decomposition approaches signifi-
cantly improves the required computation time, but they should be implemented
with care. For example choosing the ‘best’ night shift, in the (Day, Night, Off)-
approach requires some attention. However, by tailoring the decomposition ap-
proach to the instance (class) at hand, we expect our decomposition approach to
be successful for many shift rostering instances.
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CHAPTER 7

Shift Rostering Using Decomposition: Assign
Weekend Shifts First

7.1 Introduction

For many people most social activities are scheduled during the weekend, which
makes working in the weekend less attractive for them. Various industries, such as
healthcare and security services, offer services on a 24/7 basis, which implies that
certain employees need to work during weekends. Scheduling personnel during
weekends is challenging, since most employers like to consider the preferences
of each individual on the one hand, but on the other hand also staffing demands
need to be covered. Furthermore, work schedules have to respect labor legislation,
and shifts have to be distributed in an equitable way among employees, which
complicates the matter even further.

The existing literature recognizes the importance of finding good or fair as-
signments of weekend shifts to employees; some papers propose (soft) constraints
to cope with preferences related to weekends shifts, see, e.qg,, [71]. Still, to our
knowledge, the literature does not consider methods specifically designed to con-
struct weekend shifts rosters. Of course, weekend work schedules can be created
using a general shift rostering method. However, this approach ignores problem
specific information. Therefore, we design a weekend shift rostering algorithm that
is tailored to use this information.

The research in this chapter was motivated by practical experiences of cus-
tomers of ORTEC. Many planners, when assigning shifts manually, decompose the
shift rostering process into two or more steps. They first assign weekend shifts,
and secondly they assign the weekday shifts. This shows that many planners con-
sider weekend-related shift rostering preferences as more important than other
preferences. We use the same assumption in this research, and apply the same
decomposition to assign the weekend and weekday shifts.
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Our main contribution is offering a decomposition approach that first assigns
weekend shifts before the weekday shifts. Our main interest lies in analyzing
whether such an approach is useful, also from an optimization point of view. First,
we formally introduce the Weekend Rostering Problem (WRP) in Section 7.2.
A problem specific heuristic designed to solve the Weekend Rostering Problem
(WRP) is described in Section 7.3. After the heuristic created a weekend shifts
schedule the weekday shifts are assigned using a commercially implemented al-
gorithm, see [66], [214]. In Section 7.4 we show the first-phase heuristic to be
effective both on artificially generated instances and real-life instances. In addi-
tion, Section 7.4 discusses the effects of our two-phase approach on the weekend
work schedule, as well as on the complete roster. Section 7.5 presents conclusions
and discussion.

Table 7.1: Constraints related to weekend shift rostering found in the literature

Constraint Literature references

Max # shifts during weekends (soft) [9, 10, 68, 118, 249]

Max # shifts during weekends (hard) [9, 10, 20, 110, 118, 249]

Work complete weekends (hard) [35, 43, 66, 118, 141, 165, 167, 170, 184,
217, 224, 254, 266]

Work complete weekends (soft) [19, 34, 38, 43, 48, 50, 56, 56, 61, 63, 64,

66, 66, 67, 68, 69, 72, 73, 74, 87, 131,
134, 141, 144, 160, 162, 166, 171, 175,
185, 187, 188, 195, 197, 218, 219, 226,
238, 248, 250, 253, 261]

Min/max # weekends in # weeks (hard) [18, 19, 20, 34, 35, 43, 49, 63, 63, 66, 67,
72, 73, 74, 75, 110, 122, 134, 155, 161,
162, 162, 165, 166, 167, 168, 170, 171,
175, 184, 185, 188, 188, 189, 202, 217,
219, 224, 226, 261, 267, 268, 270]

Min/max # weekends in # weeks (soft) [43, 50, 56, 64, 67, 69, 169, 187, 197, 248,

253, 265].
Identical shifts in weekend (hard) [67, 141, 184]
Identical shifts in weekend (soft) [19, 50, 56, 63, 64, 67, 141, 175, 197, 253]
Fair distribution of weekend shifts in var-  [225]

tous scheduling periods
No night shift before free weekend (soft) [50, 56, 64, 67, 187, 197]
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7.2 Problem assumptions and formulation

In this section we define the Weekend Rostering Problem (WRP), discuss the as-
sumptions of the WRP and address the constraints that are considered in the WRP.
In the WRP we are only interested in assigning weekend shifts. In this chapter,
weekend shifts are the shifts on the two ‘main’ days of the weekend, possibly
extended with shifts on the evening preceding the weekend and the morning after
the weekend. For ease of discussion, we let Saturday and Sunday be the ‘main’
weekend days in the research performed in this chapter. Of course, depending on
the application one might just as well choose any combination of two consecutive
days as the weekend days.

As indicated in Section 7.1, we consider the WRP as a first phase of the
shift rostering problem. In general, shift rostering problems strive to assign shifts
to employees. Shifts are time periods specifying working time as opposed to
rest time. Furthermore, demand constraints define the number of times each shift
should be assigned. Demand constraints are the outcome of the shift scheduling
phase, which precedes the shift rostering phase. Shift scheduling designs shifts to
efficiently cover staffing levels, which in turn are the outcome of the staffing phase.
Based on the predicted workload, staffing levels are determined, indicating how
many employees need to be present on any specific time and day. For a detailed
description of these scheduling processes, see Chapter 3.

The objective of the WRP is to assign as many weekend shifts as possible,
while satisfying a set of hard constraints, and subsequently minimizing the total
penalty cost associated with violations of a set of soft constraints. We will now
discuss the hard and soft constraints that are used in the WRP.

In practice, many hard constraints are implied on rosters by labor legisla-
tion and labor agreements. The following four hard constraints are relevant for
the WRP, and considered in most shift rostering literature; the literature review
in [255] illustrates for papers from the period 2004-2012 which constraints are con-
sidered. This reveals that from that period 59 papers consider constraints related
to weekend planning, however none of them proposes a special purpose weekend
planner algorithm.

In [255], literature is classified according to the shift rostering constraints being
considered. For constraints related to weekend shift scheduling we have extended
this classification and list the corresponding papers in Table 7.1. For each con-
straint is indicated whether it is considered to be hard or soft. Compared to [255],
we additionally include the literature from the period before 2004, and we include
three additional constraints related to weekend shift schedules. These constraints
are: the maximum number of weekend shifts during the scheduling horizon, a fair
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distribution of weekend shifts over various scheduling horizons, and the constraint
that no night shift should be scheduled before a free weekend.

For the weekend rostering problem as studied in this chapter, the following
hard constraints are included:

Constraint C1 (Availability). Employees may not work if they are unavailable.
Employees are unavailable if they are on leave, for example, or assigned to another
shift.

Constraint C2 (Skills). Shift may only be assigned to employees that have all
skills required to work the shift.

Constraint C3 (Rest between shifts). Between two subsequent shifts there should
be a rest period of a given minimum length.

The next constraint implies restrictions on the number of working weekends in
a given period:

Constraint C4 (Weekends in p weeks). An employee may only work k out of p
weekends, where both k and p may be employee dependent.

In the literature, constraints on the maximum number of consecutive working
weekends m are often separately mentioned. Note however, that such a constraint
can also be ensured via hard constraint C4: working at most m weekends consec-
utively is the same as working at most m out of m + 1 weekends. Therefore, the
constraints are grouped together in Table 7.1.

Next to these hard constraints, the WRP also considers seven soft constraints.
This list of soft constraints is not supposed to be a complete list of soft constraints
that can be implied on the assignment of weekend shifts.

The first soft constraint concerns the scheduling of ‘complete’ off weekends.
Working only on one of the weekend days is unattractive for two reasons. First,
there are labor rules regarding the number of times an employee works in weekends
during a specified period. Working either the complete weekend, or not at all,
enables organizations to assign more weekend shifts to employees in total. Second,
employee preferences are either to work the complete weekend or to have the
complete weekend off. We encounter this in the real-life instances of Section 7.4.1
on which we test the WRP algorithm designed in Section 7.3.3. Therefore, the
following soft constraint is used to assign complete weekends off:

Soft constraint S1 (Complete weekends off). An employee should preferably either
work the complete weekend, or have the complete weekend off.
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The next two soft constraints concern organizational preferences.

Soft constraint S2. Weekend shifts should be equitably distributed among em-
ployees, i.e., proportional to the contract hours of the employees.

Soft constraint S3. Weekend shift types, such as early, late and night, should be
equitably distributed among employees

The next four constraints concern employee preferences.
Soft constraint S4. Work or do not work during a specific weekend.

Soft constraint S5. Work or do not work a specific shift on a specific day in a
specific weekend.

Soft constraint S6. Work or do not work two specific shifts consecutively.
Soft constraint S7. Work at most k weekends in p weeks.

Note that soft constraint S7 is the equivalent of hard constraint C4.

Each of the soft constraints has a (user definable) penalty cost associated with
the violation of the constraint. The penalty cost may differ per employee, and
constraints can be added to a problem instance multiple times with different pa-
rameter and penalty values. If a shift assignment violates multiple soft constraints
penalty costs are incurred for every violation.

Now that we have stated, described, and motivated the constraints used in the
WRP, the next section introduces a model to solve the WRP.

7.3 Solution approach and modeling

7.3.1 Introduction

To assign the weekday and weekend shifts, i.e., to solve the shift rostering problem,
we apply a decomposition approach. The first phase, the Weekend Rostering
Problem (WRP), assigns the weekend shifts, which are, as indicated in Section 7.2,
the shifts on Saturday and Sunday, and optionally Friday evening and Monday
morning. The second phase completes the work schedule by assigning the weekday
shifts. For the second phase we use a commercial algorithm, see Section 7.3.4.
With the WRP, we introduce a new decomposition approach for shift rostering
problems. In Section 7.3.2, we discuss the use of other decomposition approaches
to solve shift rostering problems. In Section 7.3.3, we explain how we solve the
WRP.

83



Shift Rostering Using Decomposition: Assign Weekend Shifts First

7.3.2 Decomposition in shift rostering

This section discusses some decomposition approaches to solve the shift rostering
problem.

In Chapter 6, we extensively discuss days off scheduling. Days off scheduling
first decides when employees should work, and next, in a reduced solution space,
shifts are assigned. For more details on our days off decomposition method and
the related literature, the reader is referred to Chapter 6. Another decomposition
example is the use of shift patterns. Shift patterns specify a sequence of shifts
that are worked consecutively. In the methods proposed in [5], [115], and [160] shift
patterns must be created manually, after which they are assigned by scheduling
algorithms. The algorithms of [56], and [68] first generate these shift patterns
and then assign them to employees. The idea is shift patterns already comply
with many constraints and preferences on consecutive shifts, which makes the
assignment easier and more efficient.

7.3.3 The weekend rostering problem

The WRP is solved using a heuristic solution approach. A solution is constructed
with a greedy 3-step heuristic. Step 1, described in Section 7.3.3, creates ‘week-
end shift combinations’: combinations of Saturday and Sunday shifts for one par-
ticular weekend. These are possibly extended with Friday night and Monday
morning shifts, dependent on whether these shifts are considered weekend shifts
in the particular problem instance. Step 2, described in Section 7.3.3, assigns the
weekend shift combinations to employees, this second step is based on a prelimi-
nary research in [262]. The first two steps of our heuristic are illustrated with an
example in Section 7.3.3. Finally, in Step 3, described in Section 7.3.3, we apply
local search to improve the assignment of Step 2.

Weekend shift combinations

We create shift combinations per weekend by solving a minimum-cost transporta-
tion problem. The idea is to choose shift combinations, such that as many shifts
as possible can be assigned. Let P and Q be sets of nodes corresponding to the
different types of shifts on Saturday and Sunday, respectively. For p € P, let s,
be the number of Saturday shifts of type p that must be covered, and, for g € Q,
let dg be the number of Sunday shifts of type g that must be covered. Let / be the
set of employees, and let /P9 C | denote the subset of employees that is allowed to
work combination (p, g). An employee is not allowed to work combination (p, q) if
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working it would violate one of the hard constraints of Section 7.2. Let c,, denote
the transportation cost from node p to node g. To define c,, we distinguish three
cases: either ‘many’, few’ or no employees are allowed to work combination (p, q).
First, if no employees are allowed to work combination (p, g), we do not want it
to be selected. Second, if ‘few’ employees are allowed to work combination (p, g),
the combination may be selected only when it is necessary, i.e., when otherwise
there is no solution to the transportation problem. Third, if ‘many’ employees
are allowed to work combination (p, g) we want to relate c¢,q to the penalty cost
associated with violating the soft constraints.

If no employee is allowed to work combination (p, q) we set c,; = 0o, hence:
Cpg = 00 if P9 =0. (7.3.1)

However, when |/P7| > 0, we want to let c,q depend on the size of /P9. If only
few’ employees are allowed to work combination (p, g) we want ¢, to be high.
We say that ‘few’ employees are allowed to work combination (p, q) if:

|1P9] < min{s,, dq} .
U max{d_,cpsp. 2 _geodq}

(7.32)

Here, the numerator in the fraction on the right hand side denotes the maximum
number of times combination (p, g) can be assigned, the denominator denotes the
minimum number of employees that need to work during the particular weekend.
If the right hand side in (7.3.2) is larger than the left hand side, which denotes
the fraction of employees that are allowed to work combination (p, g), we say that
‘few’ employees are allowed to work combination (p, g). In this case we define ¢,
as M - |1\ IP9|, where M is a ‘big’ number. Hence:

| 1P mln{sp,dq}
Cpg = M- |1\ IPY] if < ‘
Pq [\ 4] /] max{_,ep Sp 2_geo dq}

(7.33)

If ‘many’ employees are allowed to work shift combination (p, q), i.e., if (7.3.2) does
not hold, we relate c,, to the penalty costs associated with the soft constraints.
Let S,, denote the penalty cost associated with the soft constraints of assigning
combination (p, q) to employee i. Then:

o |9 min{s,, dq}
Cpg = S, if > . (7.3.4)
= LS T 2 s e T ]
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Summarizing we have:

i e min{s,,dq}
Y if 170 > p:dg
el Pq 1= max{d_,ep 5p.d_geo da}

= .o |IP9] min{s,,d;}
Cpq M-I\ Pe| i B < TR bR s (7.3.5)

00 if P9 =40.

The transportation problem defined by the described parameters is solved by
the network flow formulation discussed in [241].

The solution x,, of the transportation problem indicates for each shift combina-
tion (p, g) the number of times it should be assigned. These shift combinations are
extended with the remaining Friday shifts by solving additional transport prob-
lems. To this end, the Friday shifts are considered as the set of P shifts whereas
the combinations of Saturday and Sunday shifts are considered as the set of Q
shifts. This problem is then initialized and solved as described above. For Monday
shifts we apply an analogous procedure.

Assign shift combinations

Now that we have the set of shift combinations per weekend that we want to
assign, we describe how these shifts are assigned to employees. The assignment
algorithm is based on a preliminary study performed in [262].

The heuristic first selects a shift combination (part 1) and then an employee
(part 2). The shift combination is selected using the following scheme:

1a. Select the ‘least flexible' shift combination: the shift combination (p, q) for
which the ratio between “the number of times combination (p, g) should be
assigned” (x,4) and “the number of employees allowed to work combination
(p.q)" (|IP9]) is the largest. This shift combination is presumed to be the
hardest to assign to an employee. In case of a tie, go to 1b.

1b. Of the remaining combinations, select the one for which x,, is the smallest.
These are presumed to be the hardest to assign. In case of a tie, go to 1c.

1c. Of the remaining combinations, select the combination that is earliest in time.
Since some of the constraints consider assignments in previous weekends,
shifts that are earlier in time are presumed to be harder to assign. In case of
a tie, go to 1d.

1d. Randomly select from the remaining combinations.
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When a shift combination is selected, an employee is selected via the following
scheme:

2a. Select the ‘least busy' employee: the employee working the fewest number
of weekends relative to his contract hours. This way, all employees will work
(approximately) the same number of weekends. In case of a tie, go to 2b.

2b. Select the employee for which S;',q is the smallest. In case of a tie, go to 2c.

2c. Select the ‘least flexible’ employee: the employee that has the least number
of remaining shift combinations that the employee is allowed to work. In case
of a tie, go to 2d.

2d. Randomly select from the remaining employees.

Illustrative example

The example in this section consists of two parts. The first part illustrates the cre-
ation of weekend shift combinations, and the second part illustrates the assignment
of the weekend shift combinations.

Create weekend shift combinations for one weekend
On both Saturday and Sunday we have one A and one B shift , so | = J =
{A. B}. We have 4 employees, so | = {1,2,3,4}. Employee 1 is not allowed to
work shift B at all, employee 3 is not allowed to work shift B on Saturday. We
let Saa = Sgg = 1 and Sag = Spa = 2. We omit the superscript of the penalty
costs, since in this example they are the same for all employees.
First, note that:

min{s,, dq} 1
== forpeP,qge0. (7.3.6)
ma><{Zp€,D SP'quO ds} 2

Second, || =4, [I"B| =3, |I1BA = 2, |IBB| = 2, and |/| = 4. Hence, for (A, A) we
have:

AA .
I _4_ g min{sa, da} . (7.37)
/] 4 maX{ZpGPSP'ZqEQ ds} 2

So, for combination (A, A) we say that ‘many’ employees are available, hence:

CAn = SAA =1. (738)
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Similar, for (A, B) we find that ‘many’ employees are available, hence cap =
Sag = 2, and for (B, A) and (B, B) we find that ‘few’ employees are available,
hence cga =M - |[I\ 1B =M -2, and cgg =M - |I\ IBB] = M . 2.

The solution of the transportation problem is then x44 = xgg = 1, xap = xga =
0. So, we create one shift combination (A, A) and one shift combination (B, B), but
no shift combinations (B, A) or (A, B).

Assign weekend shift combinations

After shift combinations are created they are assigned to employees in the
assignment phase. To illustrate this: assume we have a scheduling horizon con-
taining two weekends. For the first weekend, the shift combinations as generated
in the previous example are used, see also Table 7.2. The shift combinations for the
second weekend and the corresponding available employees are listed in Table 7.2
as well.

Table 7.2: Assigning shift combinations

Weekend  Combination  x,4 [Pa Spq
1 (A, A) 1 {1,2,3,4} 1
1 (B, B) 1 {2,4} 1
2 (B, A) 1 {1.4} 2
2 (A, B) 2 {1,2,3,4} 2

The x,q/|/P7| ratios of the shift combinations are % % % and % respectively,

hence shift combinations 2, 3, and 4, are the ‘least flexible’ (Step 1a). We have
xgg = 1,xga =1, and xap = 2, so (B, B) and (B, A) have to be assigned the least
number of times (Step 1b). Since (B, B) is a shift combination of the first weekend,
and (B, A) of the second, (B, B) is earliest in time (Step 1c), so (B, B) is to be
assigned.

Since there are no shift combinations assigned yet, employees 2 and 4 (the em-
ployees available for (B, B)) are equally busy (Step 2a). For both these employees
SEB =1, so Step 2b gives no conclusion on which employee to select. However,
since employee 2 has only 3 remaining shift combinations (including (B, B)) and
employee 4 has 4, Step 2c assigns shift combination (B, B) to employee 2.

The other shift combinations are assigned to employees in an analogous way.
(B, A) is assigned randomly to 1 or 4, say it is assigned to 1. Then (A, B) is
assigned randomly to 3 or 4, say it is assigned to 3. Next, the other (A, B)
combination is assigned to 4, and, finally, (A, A) is assigned randomly to 1, 3 or
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Sat. Sun. Sat. Sun.
Employee 1 é A A ) é B A )
Employee 2 B B
.................... N L D A et
Employee 3 B
Employee 4 \ A B D

Figure 7.1: Example - Resulting work schedule

4, say it is assigned to 1. We then get the work schedule as in Figure 7.1.

Local search

The initial solution, created via the heuristics described in Section 7.3.3 and Sec-
tion 7.3.3, has a cost implied by violations of the soft constraints. We try to improve
this solution using two local search techniques: subsequently a cyclic exchange
method and a 2-opt search are applied.

Strictly speaking, our cyclic exchange method is a Very Large-scale Neigh-
borhood Search (VLNS) as introduced in [3], but with a limit on the cycle length.
Our cyclic exchange method applies cyclical swaps of shift combinations, compa-
rable with the cyclic exchange neighborhood applied in [3]. Possible swaps are:
reassigning a shift combination from one employee to another employee, swapping
two shift combinations, or cyclically swapping three up to five shift combinations.
The first two options are visualized in Figure 7.2. Swaps can be applied both
to shift combinations in the same weekend and to shift combinations in different
weekends. The algorithm consists of finding resource constrained negative cycles
in an improvement graph, see [213].

Each iteration of 2-opt search calculates per shift whether the total penalty
cost improves if this shift is swapped with another shift. That is, if employee 1 is
assigned to shift A, and employee 2 to shift B, 2-opt calculates whether the total
penalty cost decreases when employee 1 is assigned to shift B, and employee 2 to
shift A, see Figure 7.3. The swap is accepted if the total penalty cost decreases.
Note that 2-opt also considers swapping not assigned shifts with assigned shifts.
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Sat. i Sun.
Employee 1 "‘>
Employee 2 A A;

Sat. Sun. Sat. Sun.
Employee 1 é A : A> : A

\ : /> :

.................... \ : R s i A
Employee 2 : | L B : Bj

Figure 7.2: Local search: cyclic exchanges. Assigning a shift combination to another
employee (top), and swapping two shift combinations (bottom)

The 2-opt search is executed after the cyclic exchange method. The cyclic
exchange method optimizes the assignment of the working weekends whereas the
2-opt search optimizes the shift assignment within the working weekends. Since
the shift assignment strongly depends on preferences of individual employees, for,
e.g., specific shift sequences or shift preferences, it is logical to first apply the
cyclic exchange method before the 2-opt search.

The local search techniques are applied as in Algorithm 7.1:

Algorithm 7.1 Local search scheme

1. Apply cyclic exchanges, until no improvements found.

2. Apply 2-opt, until no improvements found.

7.3.4 Weekday shift assignment

The first phase considered the weekend shifts and assigned these as good as
possible. In the second phase we will assign the weekday shifts, while keeping the
weekend shifts assigned as decided in the first phase. To assign the weekday shifts,
we use a commercial algorithm (CA) that is implemented in ORTEC's workforce
scheduling software [201]. Mathematical details of this algorithm are found in [66,
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Employee 1

Employee 2

Figure 7.3: Local search: 2-opt search

214]. In short, this algorithm first employs a hybrid heuristic ordering method to
construct multiple initial shift schedules. After that, these initial schedules are
improved by a genetic algorithm. Next, the best schedule found by the genetic
algorithm is improved using a variable neighborhood search that applies various
neighborhood operators, such as the 2-opt operator that is also included in our
WRP approach. The schedule produced by the variable neighborhood search is
improved using an iterated local search, that iteratively unassigns all shifts in
a part of the schedule and then uses the variable neighborhood search of the
previous stage to reassign these shifts. The iterated local search is continued
until a set computation time expires, or if the algorithm concludes that an optimal
solution is reached.

7.4 Results

This section discusses experimental results. First, Section 7.4.1 describes two
case studies in which we tested the weekend rostering algorithm. Next, Sec-
tion 7.4.2 evaluates the local search components of the algorithm, as described in
Section 7.3.3, and illustrates that they have a significant impact on the produced
results. After that, Section 7.4.3 benchmarks the weekend rostering algorithm
against the commercial algorithm described in Section 7.3.4. Section 7.4.4 per-
forms the same benchmark on public nurse rostering instances from the PATAT
2010 Nurse Rostering Competition [146].

7.4.1 Case studies

Two case studies are used in our experiments. These are provided by a Belgian
Police department and a Dutch care provider, which are described in Section 7.4.1
and Section 7.4.1, respectively.
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Case 1: Belgian Police

The first case is provided by a Belgian Police department. This department con-
sists of 60 employees, and it uses two-month rosters. In each roster, approximately
2000 shifts of the following four types need to be assigned: morning shifts (7h-
13h), afternoon shifts (13h-22h), night shifts (22h-7h), and days off. Shifts are
assigned on both week and weekend days.

For the weekend work schedules, all constraints defined in Section 7.2 are
implied. For the complete roster, additionally hard constraints are implied on
the number of consecutive shifts and the number of consecutive night shifts, and
soft constraints are implied on the minimum and maximum number of shifts of a
given type, the minimum total working hours during the scheduling horizon, and
on combinations of different shift types. Finally, the main objective is to assign as
many shifts as possible.

Before the Belgian Police department started to use the WRP+CA approach,
as proposed in this chapter, they manually assigned the weekend shifts before
constructing the complete roster. Note that WRP+CA uses exactly the same
decomposition.

Case 2: Dutch care provider

The second case is provided by a Dutch care provider for visually impaired people
that offers intramural and extramural care. We test the weekend planner on two
departments called C1 and C2. These have 12 and 42 employees, respectively,
and both use monthly rosters. C1 has two shift types: morning shifts (8h-15h) and
afternoon shifts (15h-22h), and shifts must be scheduled on week and weekend
days. In every month, approximately 135 shifts need to be assigned. C2 has three
shift types: morning shifts (8h-15h), day shifts (10h-14h), and afternoon shifts
(15h-22h), and again shifts must be assigned on week and weekend days. For C2
approximately 450 shifts must be assigned every month.

For the weekend work schedules, all hard constraints defined in Section 7.2 are
implied on the rosters, however from the soft constraints only soft constraint S1 is
implied for both departments. For department C2, additionally soft constraint S6
regarding forbidden combinations of shifts is defined. For the complete roster,
soft constraints are implied on minimal and maximal shift series lengths, minimal
number of consecutive days off, and the minimal and maximal number of shifts
(of a specific type) in a one week and two week period. In addition, preferably
stand-alone shifts should not be scheduled.
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7.4.2 Preliminary results

This section performs a preliminary analysis of the cyclic exchange and the 2-opt
heuristics, as described in Section 7.3.3, that are used in our weekend rostering
heuristic. We apply the weekend rostering heuristic to the 12 scheduling instances
provided by the case studies, 6 instances (P1-P6) were provided by the Belgian
Police and the other 6 instances, 3 for each department (C1.1-C2.3), were provided
by the Dutch care provider. For all instances, we registered computation times
and solution quality. The solution quality is expressed as a penalty cost implied
by violations of soft constraints expressed in the scheduling instances.

Each instance is solved twice. Both times the first step is to construct an initial
weekend shift schedule by creating and assigning weekend shift combinations as
described in Section 7.3.3 and Section 7.3.3, respectively. After that, in the first
run, we subsequently execute the cyclic exchange and the 2-opt method, and in
the second run, we only apply the 2-opt method. We do not analyze the effect of
first applying the 2-opt and subsequently the cyclic exchange method, since, as
outlined in Section 7.3.3, it makes no sense to run the local search method in that
order. Table 7.3 summarizes results.

Table 7.3: Analysis of local search methods

Exch. & 2-opt Only 2-opt
Time (sec) Penalty Time (sec) Penalty
Instance  Constr. Exch. 2-opt Exch.  2-opt  Constr. 2-opt 2-opt

P1 714 3440 26 -11.7% -18.1% 727 33 -16.4%
P2 1954 12582 61 -34.4% -3.2% 1891 80 -4.9%
P3 2042 10744 61 -321% -2.0% 2080 63 -2.9%
P4 2227 12616 56 -40.0% -0.8% 2142 77 -11.2%
P5 1954 12582 61 -34.4% -3.2% 2088 67 -4.0%
P6 1793 10857 45 -34.6% -5.8% 1851 51 -3.4%
C1.1 24 9 0 -47.7%  0.0% 25 0 0.0%
1.2 18 8 0 -96.3%  0.0% 17 0 0.0%
C1.3 19 10 0 -65.7%  0.0% 18 0 0.0%
c21 40 21 0 0.0%  0.0% 36 0 -0.1%
C2.2 28 9 0 -83.4%  0.0% 26 0 0.0%
C23 25 9 0 0.0%  0.0% 59 0 0.0%

Although not directly relevant for our analysis, we observe from Table 7.3 that
the computation times of the Police instances are much larger than those of the
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Care instances. A major factor in this is that these instances have more employees
and a longer scheduling horizon, however there were also some database issues
that we were unable to resolve. Although this resulted in longer computation
times, see Table 7.3, this had no effect on the relative computation times of the
individual planning stages.

From the fifth column of Table 7.3, we observe that in general the exchange
method significantly reduces the penalty function value of both the Police and the
Care instances. In addition, for the Police instances, the 2-opt method also sig-
nificantly reduces the penalty function value, independent if the exchange method
is used or not (sixth and ninth column of Table 7.3). For the Care instances, we
observe that the 2-opt method only affects the result for instance C2.1, since only
for department C2 there is a soft constraint defined for which the 2-opt method
has a positive effect.

The computation times of the exchange and 2-opt methods are listed in the
third, fourth, and eighth column of Table 7.3. Note that, for the Care instances,
the computation times for the 2-opt method are only a couple of milliseconds,
hence appearing as zeros when rounded to seconds. Considering the computation
times of the exchange and 2-opt methods, we observe that the exchange method
requires more time than the 2-opt method. However, the exchange method achieves
a larger reduction in penalty value. Therefore, we choose to include both the
exchange method and the 2-opt method in the experiments of Section 7.4.3 and
Section 7.4.4.

7.4.3 Case study results

This section presents computational results on the case studies. We start with a
description of the experimental setup and after that we discuss the results.

Experimental setup

We want to study the effect weekend rostering has on the complete roster, i.e., the
work schedule of the entire week. We compare two approaches, called WRP+CA
and CA. WRP+CA first assigns the weekend shifts using the weekend rostering
heuristic. Then, it ‘fixes’ these shifts, and assigns the weekday shift using the
commercial algorithm, i.e., the CA considers the weekend shift schedule as given
in the WRP+CA approach. This is done to resemble how in practice schedules
are created by human planners. The CA approach assigns all shifts (weekday and
weekend) using the same commercial algorithm. Both approaches use the same
set of hard and soft constraints.
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Using this set-up, we can study the effect of first generating the weekend shift
schedule, and fixing this, before the weekday shift schedule is generated, which is
one of the motivations for this research.

Experimental Results

This section presents our experimental results for the cases presented in Sec-
tion 7.4.1 and Section 7.4.1. For both approaches a time limit of 1 hour was set.
Table 7.4 summarizes the results.

In Table 7.4 we observe for all instances of the Belgian Police case that both the
fraction of complete working weekends (column ‘On’), and the fraction of complete
off weekends (column ‘Off’) is larger when the WRP+CA approach is applied.
This implies that, for all instances, the fraction of half weekends (column ‘Half’) is
smaller if WRP+CA is applied. We say that an employee works a half weekend
if the employee works either on Saturday or on Sunday, but not on both days. In
fact, on average WRP+CA assigns 57.8% weekends On, 40.2% weekends Off, and
2.1% half weekends. CA assigns on average 44.4% weekends Complete On, 26.7%
weekends Complete Off, and 28.9% half weekends. Furthermore, the number of not
assigned weekend shifts (seventh column) and the total number of not assigned
shifts (eighth column) are approximately the same for WRP+CA and CA. Hence,
WRP+CA outperforms CA on the weekend shift assignment, while the number of
assigned shifts is approximately equal.

For department C1 of the Dutch Care Provider we observe no difference be-
tween both approaches. We believe this is caused by the relatively small size of
this department. For C2 we observe that WRP+CA outperforms CA on the week-
end shift assignment. On average WRP+CA assigns 27.8% weekends On, 67.3%
weekends Off, and 5.0% half weekends. CA assigns on average 24.2% weekends
Complete On, 64.3% weekends Complete Off, and 11.6% half weekends. Again the
number of weekend shifts not assigned and the total number of shifts not assigned
are about equal. For case C2.2, note that CA assigns only one shift more than
WRP+CA does.

7.4.4 Benchmark results

In addition to the practical case studies, we also study the effect of our two ap-
proaches, WRP+CA and CA (see Section 7.4.3, on public benchmark instances. We
used the benchmark instances of the Nurse Rostering Competition of the PATAT
2010 Conference, see [146]. The instances are available online at [208]. The in-
stances have a scheduling horizon of 28 days, contain employee requests for shifts
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Table 7.4: Experimental results

Weekend (%) Not assigned shifts

Instance  Approach On Off Half Weekend  Total
P1  WRP+CA 738 2338 25 0.3% 1.4%
CA 669 148 183 0.9% 2.0%

P2 WRP+CA 607 36.9 24 0.3% 0.6%
CA 485 246 269 0.3% 0.4%

P3  WRP+CA 528 46.0 1.3 0.1% 0.1%
CA 38.8 273 339 0.2% 0.3%

P4 WRP+CA 542 409 4.9 0.0% 0.3%
CA 388 358 254 0.0% 0.0%

P5 WRP+CA 524 465 1.1 0.2% 0.2%
CA 348 296 356 0.3% 0.5%

P6  WRP+CA 527 471 0.2 0.4% 1.9%
CA 386 279 335 0.4% 0.9%

C11 WRP+CA 333 66.7 0.0 0.0% 0.0%
CA 333 66.7 0.0 0.0% 0.0%

C1.2 WRP+CA 333 66.7 0.0 0.0% 0.0%
CA 333 66.7 0.0 0.0% 0.0%

C1.3 WRP+CA 267 66.7 6.7 0.0% 0.0%
CA 26.7 66.7 6.7 0.0% 0.0%

C21 WRP+CA 279 674 47 0.0% 0.0%
CA 237 633 13.0 0.0% 0.0%

C22 WRP+CA 286 66.7 4.8 0.0% 0.0%
CA 250 631 119 0.0% 0.0%

C23 WRP+CA 268 67.7 55 2.1% 5.8%
CA 23.8 665 9.8 2.0% 7.0%

and days off, and numerous scheduling constraints, such as a minimum and maxi-
mum number of shifts, the maximum number of consecutive working weekends, and
the complete weekends constraint. The instances are divided in three categories:
‘sprint’, ‘medium’, and ‘long’, having around 10, 30, and 50 employees, respectively.

The weekend shift scheduling constraints that are implied on these instances
are:

e Minimum and maximum number of consecutive weekends
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e Working complete weekends
e Work identical shifts during weekends
e No night shift before free weekends

where a complete weekend is defined as working Saturday and Sunday, and
instance-dependent also Friday. Most constraints in these instances are soft
constraints. The exceptions are that employees can work at most one shift per
day, and if an instance includes multiple skill categories, a hard constraint may
imply that employees must be skilled sufficiently.

From our experimental results, we excluded instances with a three day weekend
definition (Friday, Saturday, Sunday), since this is not included in the CA. The
instances that are excluded are the ‘Long hidden’, ‘Long hint’ and ‘Long late’
instances. The CA also does not include the pattern constraint ‘no D-E-D". This
constraint penalizes the consecutive assignment of a ‘Day’ shift, an ‘Early’ shift,
and again a '‘Day’ shift. We have ignored this constraint in the modeling of the
instances, since it is contained in almost all instances.

The WRP definition, see Section 7.2, does not include the no night shift before
free weekend and the minimum number of consecutive weekends constraint. How-
ever, we did include instances containing these constraints, to keep a sufficient
number of test instances.

We used calculation times of 1 hour, 30 minutes, 10 minutes for the ‘long,
‘medium’, and ‘sprint’ instances, respectively. Results are summarized in Table 7.5.
For each instance category, e.g., ‘Sprint hidden’ or ‘Medium late’, we included the
average results in the table.

For the benchmark instances, we looked at the same performance indicators as
for the instances from practice. For all instances all shifts were assigned by both
approaches. Hence, the number of not assigned shifts is not reported in Table 7.5.

The columns ‘On’, ‘Off’, and ‘Half’, again report the number of complete on,
off and half weekends, respectively. For the benchmark instances, the weekend is
considered to include Friday, Saturday and Sunday if the instance includes the
constraint that it is not allowed to schedule a shift on Friday before an off day
on both Saturday and Sunday. For the other instances, the weekend is defined
as Saturday and Sunday. For all instances, we see that the WRP+CA approach
schedules more complete weekends on, more complete weekends off, and less half
weekends. On average, the WRP+CA approach schedules 6.3% more complete
weekends on, 5.1% more complete weekends off, and 11.4% half weekends less.

The sixth, seventh and eighth column of Table 7.5 list violations of constraints
related to the weekend schedule. The column ‘Same shifts’ indicates the number
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Table 7.5: Results benchmark instances PATAT 2010 NRP competition

Weekend (%) Same Cons. wknds

Instance  Approach On Off Half shifts max2 max3 Penalty
Sprint WRP+CA  40.0 40.0 20.0 0.00 0.00 0.00 9.9%

CA 38.0 38.8 233  0.60 3.40 0.40 2.0%
Sprint WRP+CA 463 429 108  0.00 333 033 42.7%
hidden CA 35.4 325 321 1.67 950 3.50 25.8%
Sprint WRP+CA  40.0 46.7 133 0.00 0.00 0.00 -
hint CA 342 417 242  0.67 4.67  0.00 —
Sprint WRP+CA 389 49.7 114 0.44 1.44 133 69.0%
late CA 356 469 175  2.00 267 022 26.6%
Medium  WRP+CA 516 484 0.0 0.00 0.00 0.00 12.9%

CA 50.0 468 3.2 440 0.00 0.00 6.8%
Medium  WRP+CA 440 413 147  0.00 440 0.00 171.2%
hidden CA 31.0 31.0 38.0 10.00 17.60 2.80 71.3%
Medium  WRP+CA 367 433 20.0 0.00 2.00 0.00 -
hint CA 31.4 403 283 933 1267 1.67 —
Medium  WRP+CA 373 50.7 120 0.00 0.80 0.00 343.6%
late CA 26.3 422 315 13.60 1540 3.60 159.5%
Long WRP+CA 408 396 196 0.00 0.00 0.00 15.3%

CA 32.8 333 340 16.00 1560 1.00 10.6%
Average WRP+CA 417 446 137 0.08 141 0.30 82.0%

CA 355 395 250 557 8.91 1.0 36.8%

of violations of the soft constraint that employees prefer to work identical shift
types during the weekend. The columns 'Cons. wknds Max 2’ and 'Cons. wknds
Max 3’ indicate the number of violations of the soft constraints that employees
prefer to work at most 2 or at most 3 consecutive weekends, respectively. From
Table 7.5 it is clear that WRP+CA outperforms CA on the weekend scheduling
constraints.

The final column of Table 7.5 lists a comparison of the objective values found
by the respective approaches compared to the best known solutions as retrieved
from [208]. The objective values include the violations of both the shift scheduling
constraints related to the weekend shift schedule as well as constraints related
to the overall schedule. As expected the overall quality of the CA approach domi-
nates the WRP+CA approach. This is expected since, in the WRP+CA approach,
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the weekend shift schedule that is optimized in the first stage is considered as
given for the second stage that assigns the weekday shifts. This implies less
room for optimization in the second stage. For the ‘Sprint hint’ and the ‘Medium
hint’ instances no percentages are listed since for these instances the best known
solutions cannot be retrieved from [208].

Note that in comparing the objective values to the best known solutions, we
included the penalties incurred for violating the no night shift before free weekend
and the minimum number of consecutive weekends constraint. Since the defini-
tion of the WRP does not include these constraints, the results of the WRP+CA
approach might be improved by including these constraints in the algorithm.

The solution quality of the WRP+CA approach is on average 19% worse than
the solution quality of the CA approach, if we express the solution quality of the
WRP+CA approach as a percentage of the solution quality of the CA approach,
which is the ‘cost’ one has to pay for the achieved improved in the weekend shift
schedule.

7.5 Conclusions

In this chapter, we introduce the Weekend Rostering Problem (WRP), a rostering
problem focused on weekend shift assignment. It is motivated by our experience
that employee preferences predominantly focus on the weekends, due to many
social activities happening during the weekend. Despite of its practical relevance,
the WRP is underexposed in both the literature and decision support software.

In this chapter, we introduce a two-phase heuristic to solve the WRP. The first
phase assigns weekend shifts, the second phase assigns the remaining, weekday,
shifts. For the first phase we design a special-purpose heuristic, whereas for the
second phase we use an algorithm that is implemented in commercial software.
This decomposition approach is inspired by our experience of how work schedules
are created in practice. An algorithm specifically designed to create weekend work
schedules supports the natural planning process: planners often start assigning
the ‘hard’ shifts, such as the weekend shifts. The decomposition algorithm allows
the planner to adjust the automatically generated weekend work schedules, before
the rest of the work schedule is constructed. When the complete work schedule
is already generated, it is harder for the planner to improve the weekend work
schedule manually, since in a complete work schedule the reassigning of weekend
shifts is constrained by shifts assigned to weekdays [160].

The main motivation for this research is to analyze whether such a decompo-
sition is also useful from a computational point of view. We encourage research
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to improve the algorithm proposed in this chapter, since it is the first algorithm
we know of that solves the WRP. Furthermore, we encourage further research into
alternative decomposition approaches, such as decomposition on night shifts, days
off or skills.

Experiment results show that the heuristic designed for the weekend shift
assignment performs well on instances from practice as well as a set of public
benchmark instances. When we use this heuristic as a first phase in the shift ros-
tering problem, results obtained via this decomposition approach look promising.
Our decomposition outperforms the commercial algorithm on all of our weekend
work schedule quality defining performance indicators. This proves that our de-
composition is valuable when weekend related performance indicators are key
determinants of the quality of rosters.

We incorporated the proposed algorithm in the commercial workforce schedu-
ling software of ORTEC and the algorithm is currently used to create rosters for
the Belgian Police department case discussed in this chapter.
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CHAPTER 8

Shift Rostering from Staffing Levels: a
Branch-and-Price Approach

8.1 Introduction

In many personnel scheduling applications, shift scheduling and shift rostering
are separate planning decisions. In Chapter 3, we have defined these planning
decisions. In short, shift scheduling, defines a set of shifts that are supposed
to cover the staffing levels as efficiently as possible, and shift rostering, assigns
personnel to the created shifts.

The main disadvantage with separating shift scheduling and shift rostering is
that personnel preferences cannot, or only limitedly, be taken into account in shift
scheduling. This implies that it might be hard or even impossible to account for
these personnel preferences in assigning personnel to shifts in shift rostering. As
stressed in Chapter 2 it is important to carefully consider personnel preferences
in personnel planning and scheduling. In order to better account for personnel
preferences in shift scheduling and shift rostering, we propose a method that
integrates these planning decisions, as is graphically illustrated by Figure 8.1.

shift shift
. scheduling rostering
Workload Staffing Shifts Work
prediction levels o schedules
Labor Personnel
legislation preferences

Figure 8.1: Integrated shift scheduling and rostering: a one-step approach.
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This integrated approach for shift scheduling and rostering creates work sche-
dules directly from staffing levels, and, while doing this, it takes both labor legis-
lation and personnel preferences into account.

The main objective of this research is to develop a method that creates work
schedules directly from staffing levels. The method assigns employees to staffing
levels (time slots and skills to work on), and, while doing this, it takes employee
specific constraints into account. Employee specific constraints consist of em-
ployee specific labor rules and employee preferences. Note that such a method
may be applied to other personnel scheduling problems as well. For example, it
also applies to single day workstation planning on a radiology department where
positions have to be staffed during opening hours, and, at the same time, personnel
must have rest periods during their shifts.

This chapter is structured as follows. Section 8.2 discusses the related litera-
ture. In Section 8.3, the modeling approach is outlined. Section 8.4 discusses the
experimental results. Section 8.5 presents conclusions and discussion.

8.2 Related literature

There exists some literature that integrates shift scheduling and shift rostering.
The research in [163] outlines a method that creates work schedules using ‘shift
templates’. With this method, only shifts from a predefined set of (template) shifts
may be used in creating work schedules. However, this method does not keep track
of employee preferences, because the cost of assigning employees to shifts is not
employee specific. In [115], a straightforward extension to the model of [163] is
outlined that makes the assignment of employees to shifts employee specific. The
method proposed in [135] starts by generating a set of shifts and tries to assign
employees to them. If necessary, a tabu search method is applied to redesign
the shifts such that they better match the employee preferences. A mathematical
program that integrates shift scheduling and shift rostering for a single skill setting
is proposed in [58]. They include quite a number of hard constraints considering
minimum and maximum shift length, breaks and overtime, and some soft constraints.

In [77], a method is introduced that solves the shift scheduling and shift roster-
ing phase iteratively thereby creating work schedules directly from staffing levels.
Given a very large set of shifts and corresponding weights, the shift scheduling
phase selects a subset of shifts that covers a given demand and minimizes the
total weight. Subsequently, shift rostering assigns the employees to these shifts.
If it turns out that the resulting work schedules do not match the employee pref-
erences, the weights of all shifts are updated, and the shift rostering is resolved.
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The updating is based on changes in lower bounds of the optimal solution. By in-
creasing weights of ‘bad’ shifts, these shifts are forced out of the optimal solution.
This updating and resolving of the shift scheduling and shift rostering problem
is repeated until a specified stopping criterion is met. Unfortunately, the method
of [77] cannot directly be applied to our problem, since they apply it to a task
scheduling problem, with the objective of minimizing the total time needed to work
a complete schedule. This is different from our problem where the time horizon
is fixed and all staffing levels need to be matched within the given time frame.
However, the major problem when iteratively solving the shift scheduling and shift
rostering phase is that it is unclear what information should be provided to the
shift scheduling phase when shift rostering cannot find a solution. Moreover, when
the shift rostering phase is unable to find a solution, it is also not clear whether
this is inherent from the set of created shifts or whether there is no solution at all.

In Section 8.3, we present a Branch-and-Price approach to create work sche-
dules directly from staffing levels. For a detailed introduction to the concept of
Branch-and-Price the reader is referred to [143]. Branch-and-Price techniques
have been applied to healthcare related optimization problems by others before
us. For example, the generation of cyclic schedules using Branch-and-Price under
some general labor restrictions with nurse preferences is discussed in [217]. In [46],
a Branch-and-Price method is proposed for a model that integrates shift roster-
ing and surgery scheduling. A Branch-and-Price approach for a multi-skill shift
rostering problem is considered in [182], which differs from our model in that [182]
uses a given set of shifts, whereas our implementation creates shifts based on
staffing levels.

8.3 Modeling

This chapter addresses the creation of work schedules directly from staffing levels.
The problem studied in the remainder of this chapter considers multiple skills, but
restricts each employee to have a single period of working time, without inter-
ruptions, that is possibly preceded or succeeded by rest time. This single period
of working time is subject to employee specific constraints on the minimum and
maximum duration of this period. Hence, it is assumed that employees prefer their
working time to be without pre-emptions. Of course, this is a restrictive assumption
which is used within our modeling. However, as we will argue, it is not too hard to
extend this model to incorporate additional scheduling constraints. Furthermore,
this class of problems is interesting from a mathematical point of view, since it is
NP-complete. This is a consequence of the fact that we are dealing with staffing
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levels for multiple skills, see [257].

We study two ways of modeling this problem. The first one is integer linear
programming (ILP), in which shifts are modeled implicitly, i.e., we assign a bi-
nary decision variable to every combination of employee, time slot and skill. By
including constraints on these decision variables we ensure that valid shifts are
created. For the details of this ILP model the reader is referred to [257]. A major
drawback of the implicit ILP model is that it has a weak LP relaxation. One way to
overcome this drawback is to reformulate the ILP model. This reformulated model
has a stronger LP relaxation, but involves a larger number of variables.

For the reformulation, let J be the set of skills, indexed by j, and T the set of
time slots, indexed by t, (of, e.g., an hour each). Let d;; denote the staffing level
for skill j at time slot t. Furthermore, let / be the set of employees, and, for each
employee i € /, let the set K; denote the set of shifts for employee i. These shifts
respect the shift constraints and shift preferences of employee i. The generation
of these shift sets K; is part of our solution approach. The cost corresponding to
this shift is denoted by ¢k, which may be used to represent the shift preferences
of employee i. In our implementation, we define ¢, as the total number of time
slots that employee i is expected to work according to shift k. Now, let the binary
variable x, equal 1 if shift k € K; is performed by employee i and 0 otherwise.

Let aft denote whether skill j is provided during time slot ¢ in shift k (af, =1), or

not (a}‘, = 0). Then the formulation we propose is:

min Z Z Ci Xk (8.3.1a)

iel kek;

st Y Y dx>dy jelteT (8.3.1b)
iel kek;
Y x<1iel (8.3.1¢)
kekK;
x €{0,1} ielkekK (8.3.1d)

The objective function (8.3.1a) minimizes the total prefernce cost. The set of
constraints (8.3.1b) imply that the staffing levels are met, and constraints (8.3.1b)
ensure that an employee works at most one shift. Constraints (8.3.1d) restrict the
X, to be binary.

Note that model (8.3.1) every shift is explicitly represented by a variable.
This formulation requires a large number of variables. For realistic problems, the
number of variables is likely to be too large to be practical. Since the model
also has integrality constraints on the decision variables, we choose to apply a
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Branch-and-Bound procedure combined with column generation in the nodes of
the branching tree. This approach is commonly referred to as Branch-and-Price
(B&P). The column generation component is an implicit generation of shifts k and
shift sets K;.

Problem (8.3.1) is used as the master problem in the (B&P) method. Note that,
the master problem is sometimes referred to as the restricted master problem, since
it contains only a subset of the variables. An easy way to initialize the master
problem is to set all K; such that they contain exactly one ‘super’ shift k for
which aft = dj;. If one of the employees works such a shift, the total demand is
covered. Note that such a ‘super’ shift is not valid in practice, since we assume
an employee cannot work on two skills at the same time. However, by setting the
¢k = M for these initial shifts, where M is a significantly large number, we ensure
that after generating a number of additional (valid) shifts, these initial (invalid)
shifts disappear from the solution. Hence, all information about the validity of
shifts is assumed to be incorporated in the column generation.

To generate additional columns, we have to solve the column generation prob-
lem, which is commonly referred to as the pricing problem. To solve the pricing
problem, it is necessary to calculate the reduced costs. However, to calculate the
reduced costs, the dual of the master problem must be solved first. In doing so, we
relax the previously binary variables xx to be non-negative and real valued. This
makes the dual problem tractable, and because of Constraints (8.3.1¢c) the feasible
region of the master problem remains unchanged. Let the dual variables corre-
sponding to Constraints (8.3.1b) and (8.3.1c) be denoted by 7;; and v;, respectively.
Then, the dual of the relaxed master problem is:

max Y Y dpmit+y v (8.3.2a)

jel teT iel

s.t. Y Y apmi+vi<a ielkek (8.3.2b)
jeJ teT
>0 jelteT (8.3.2¢)
vi<0 iel (8.3.2d)

The reduced cost of a shift k" of employee i is then:
kv — Z Z aﬁn}‘, — v, (8.3.3)
jel teT

where JT]’-", and v; denote the optimal values of 7 and v;, respectively. Next,
we have to determine the shift with the lowest reduced cost, since we have a
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minimization problem. To determine this shift, it is possible, given the size of our
problem, to efficiently enumerate all possible shifts, calculate their reduced costs,
and select the one with the lowest reduced cost. Let J; denote the set of skills
employee i has, then we define 7; as follows:

e =max{n} teT. (8.3.4)

jeli

Define a working pattern w as a sequence of Os and 1s indicating in which time
slots an employee is working (1) or not working (0). Note that, the cost of a
shift with this working pattern equals ) ,.; w;. Next, we enumerate all working
patterns w that employee i is allowed to work. These are the working patterns
that consist of a single period of working time that satisfy the constraints on the
minimum and maximum duration of a working time period. After this, for each
working pattern w the reduced cost } ,.; w7, is calculated and thus we can find
a working pattern w* for employee i with the lowest reduced cost. Given this
working pattern w* and 7, we determine for every period the skill the employee is
working. As a result, the corresponding employee shift is determined. If it holds

that:
Y wim >y wi—v, (8.3.5)
teT teT
the reduced cost of this shift is negative, and it is added to the master problem.
Let the minimum and maximum number of consecutive time slots employee i
needs to work (when called to work) be denoted by (™" and [, respectively.
Then the number of working patterns is bounded by:

| T|—tin 41

Y os< Y 5:%|T|(|T|+1)§|T|2. (8.3.6)

s=| T| =041 s=1,..|T|

Determining max;e;{7j;} for t € T has time complexity O(|J| - |T]), enumerating
all possible working patterns has time complexity O(|T|?), and for every working
pattern we have to calculate the reduced cost, which gives a total time complexity
of the pricing problem (for each employee) of O(|J|-| T|+]|T|?), which is polynomial,
since |T| is constant.

Employees are evaluated according to index, i.e., we first solve the pricing
problem for employee 1 and determine whether a shift with negative reduced cost
exists for employee 1. If it exists, it is added to the master problem, and the master
problem is resolved. Otherwise, employee 2 is selected and the procedure repeats.

After generating a, possibly large, number of columns, the algorithm arrives at
a point where no columns with negative reduced cost are found. If the solution
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obtained to the linear relaxation of the master problem is integer, we have found
an optimal solution. However, when the solution is fractional, branching needs to
be applied. The branching needs to result in an integer solution. It is important
that branching decisions can be incorporated in the pricing problem, i.e., it must be
possible to adjust the pricing problem in such a way that the generated columns
respect the branching decisions. Otherwise the pricing problem could generate
invalid columns, which might slow down the solution process considerably.

In our model branching is, for each employee, applied to the time slots where
an employee starts and stops working. All shifts k € K; that violate the branching
condition are removed from the current branch of the branching tree. Note that
the ‘super’ shifts are never removed to ensure that the master problem has a
solution. The branching decisions are easily incorporated in the pricing problem;
we simply exclude shifts that have working periods before the start period or after
the stop period from the enumeration. The branching scheme leads to an integer
solution, as it should. However, even if the branching tree has specified a start
and stop period for each employee we might not end up with a feasible solution.
Example 8.1 illustrates this.

Example 8.1. Full-branching, i.e., specifying a start and stop period for each
employee, does not guarantee a feasible integer solution.

Given a rostering problem with 2 employees, 2 time slots and 2 skills. Demand

(djt) is given by:
_f dn di2\ _ [ 11
D= ( dor doy ) = ( 1 ) (8.3.7)

Assume the generated shifts are ky = (1,1) and k; = (2,2) for employee 1;
and k3 = (1,2) and k4 = (2,1) for employee 2, where the first number indicates
the skill that is provided during time slot 1, and the second number indicates the
skill that is provided during time slot 2. Furthermore, assume the cost of the shifts
equals the number of working periods in it, hence ¢y, = ¢k, = ¢cx; = ¢k, = 2. For
both employees 1 and 2 assume time slot 1 is fixed as start period and time slot 2
is fixed as stop period. The optimal solution then equals xi, = xk, = Xk, = Xk, = %
This is the unique optimal solution, and there does not exist a feasible integer
solution among the generated shifts. Furthermore, there are no shifts with negative
reduced cost, since this solution is optimal given the demand D. Since the start
and stop periods are fixed for both employees, the example shows that after full
branching it is possible that we end up with a fractional solution.

Fortunately, an integer solution can be easily constructed if start and stop
periods are fixed for all employees. We do this by formulating and solving a number
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of b-matching problems. A b-matching problem is similar to regular matching
problems except that in a b-matching problem for every vertex v and a given
nonnegative integer b, related to that vertex, the matching has to contain exactly
b, edges that are connected to v [232].

For every time slot t, define a b-matching problem as follows. First, create
vertices for all employees that are allowed to work during t. Furthermore, for every
skill j, where dj; > 0, create a demand vertex v with b, = dj;. Now, connect an
employee vertex to a demand vertex if the employee has the corresponding skill.
After each of these b-matching problems is solved, shifts are created from their
solutions and this offers a solution to the rostering problem for the current node
of the branching tree. Note that b-matching problems are solvable in polynomial
time [232]. We know that there are feasible solutions to these b-matching problems
since the fractional solutions for the rostering problem offer fractional solutions for
the b-matching problems. Since b-matching has a totally unimodular technology
matrix, such a fractional solution is a convex combination of integral solutions.
Solving the b-matching problems directly returns integral solutions, and from these
the shifts are created. Hence, the (B&P) method, of which the branching scheme
and these b-matching problems are an important part, leads to an integral solution.
Of course, the b-matching problem only needs to be solved if, after complete
branching, the solution in the current node of the branching tree is fractional and
its objective function value is less than the best integer solution found so far.

Although we engineered our (B&P) implementation such that it solves our
rostering problem, the method offers flexibility to solve other rostering problems
as well. In fact, the pricing problem determines the type of constraints that are
implied on shifts, since the master problem is nothing but a constrained set covering
problem, which only uses shifts generated by the pricing problem. Even if there
are many constraints on shifts, this ‘difficulty’ is isolated in the pricing problem
part of the solution approach. Of course, the branching strateqy also has to be
adjusted if other rostering problems are modeled, but we believe that this is not
too difficult. Furthermore, heuristics may be combined with exact approaches to
solve the pricing problems, to reduce the solving time used by the pricing problem.
Finally, we note the potential of (B&P) to incorporate 'practical’ constraints. For
example, in practice it is often preferred to have employees work only shifts from a
predefined set of ‘template’ shifts. This is easily incorporated in the (B&P) model
by simply letting the pricing problem check which, if any, of the template shifts
offers the best reduced cost.
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8.4 Experimental results

To assess the performance of our Branch-and-Price (B&P) method, we compare its
performance with that of the integer linear program (ILP) described in [257]. Note
that, ILP works here, due to our restriction that employees are allowed to work
only one shift that consists of a single time slot without interruptions. However,
the ILP model, requires artificial binary variables for every employee and every
time slot to model the rostering problem correctly. When employees are allowed
to work multiple shifts, or when more elaborate constraints are implied, the number
of artificial variables increases further, making the rostering problem both hard to
model and hard to solve in an ILP setting.

The ILP model is solved via the ILOG CpLEx 11.0 callable library. The B&P
model is implemented in SCIP. The SCIP acronym stands for Solving Constraint
Integer Programs. The non-commercial software SCIP offers a framework for con-
straint integer programming, Branch-and-Cut, and Branch-and-Price. For more
information on SCIP, the reader is referred to [2]. The B&GP approach uses CPLEX
11.0 to solve the relaxed master problem.

To assess the quality of both solution methods 7920 randomized datasets are
used. For each skill category j the time horizon 1, ..., |T| is divided into a random
number of subsets of consecutive time slots:

{1....ouh{t+1,.. b {t+1, T} (8.4.1)

Then, for each subset of time slots a demand for skill j is generated; all time slots
within a set have the same demand. For example, for a given skill category j, we
have a demand for 2 skilled workers during time slots 1 up till t;, a demand for 4
skilled workers during time slots # + 1 up till t;, and so on.

In order to be reasonably sure that demand can be met in every time slot ¢
and for each skill category j we add the restriction:

djt < lMJ . (8.4.2)
]

Using this restriction, it is likely that sufficient employees are available to meet

demand.

We think this kind of demand, where the demand for a skill category is constant
during a series of consecutive time slots, fits reality better than a uniform random
demand for time slot t and skill j. The latter implies very strong fluctuations in
demand, whereas the former implies a more ‘controlled’ demand pattern, which,
we believe, is a better simulation of practice.
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In addition to random demand, we created ‘random’ skill sets for the employ-
ees. For every employee first a uniform random number m’ is generated from
1,...,|J]- After that, uniform random numbers are drawn from 1,...,|/| until m’
different numbers are obtained, indicating the skills the employee has. With these
randomized demand and skills there is no assurance that there are enough avail-
able (skilled) employees to cover demand. However, in [257] it is argued that the
number of employees that have skill j is in expectation larger than the demand for
skill j in any time slot t. Hence, it is likely that demand can be met.

In Table 8.1, the test instances used in our experimental results are listed. In
this chapter, we provide average results for groups of instances. For a full and
detailed discussion of all results, we refer to [257]. The main focus in this chapter
is the comparison of solving times of the B&P approach and the ILP approach.
There is no need to evaluate the solution quality, since both implementations
produce optimal solutions.

Table 8.1: Test instances

Instance ] /] [T [min [max
1 20 2 24 11,12,...,20 16,17,...,24
2 20 5 24 11,12,...,20 16,17,...,24
3 20 2 4,8,...,48 2 |T] 3a-|T|
4 20 5 4,8,...,48 2-|T| 33| T|
5 5,10,...,50 2 24 12 18
6 510,...,50 5 24 12 18

For each class of test instances, Table 8.1 lists the number of employees |/|,
the number of skills |/|, and the number of time slots |T| in the second, third
and fourth column, respectively. The columns [™" and (™ indicate the minimum
number of time slots an employee should work and the maximum number of time
slots an employee is allowed to work, respectively. Note that for each parameter
sets (set of fixed values of [/|, |/|, |T], (™" and (™), we generate and solve 20
randomized test instances, implying that the number of unsolved instances may be
large. Note that for test instances 1 and 2 the values of (™" and (™ are varied.
For test instances 3 and 4 the value of |T| is varied, and for test instances 5 and
6 the value of |/| is varied. Test instances for which [™" > [™* are ignored, since
they are infeasible.

Table 8.2 presents the experimental results. The columns ‘avg. solving time
(sec)’ and ‘number of unsolved instances’ indicate the average time needed to find
a solution and the number of unsolved instances, respectively. An instance is
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regarded as ‘unsolved’ if no solution is found within 3600 seconds (i.e., one hour).

Table 8.2: Experimental results

Branch-and-Price ILP
avg time  unsolved avg time  unsolved
Instance (sec.) instances (sec.) instances
1 53 0 3.6 2
2 68.6 24 9.4 23
3 103.3 4 7.2 0
4 430.8 30 25.6 3
5 6.5 0 13.4 0
6 65.3 5 44.6 9

From Table 8.2, we observe that B&GP performs relatively poorly for instances
with large values of |T|. Furthermore, we observe that B&GP has a stronger depen-
dence on the value of |J| than ILP has. The relatively poor performance of B&P for
larger T is caused by the fact that the time needed to solve the pricing problem
depends cubically on the value of T, see Section 8.3. Furthermore, for larger |T]|
(and |/]) the number of columns that needs to be generated is also larger, which
implies that the total time consumed by the pricing problem increases. On the
positive side, although not directly apparent from Table 8.2, B&P outperforms ILP
as |/| increases.

For most istances we see that ILP outperforms B&P. Even though, the per-
formance of B&GP is quite acceptable in most intances, and there exist several
possibilities to improve the B&P method. We list some good possibilities for
improving the B&P implementation. As outlined above, the time needed by the
pricing problem increases a lot as T gets larger. There also is a slight depen-
dence on the value of m. Decreasing these dependencies will improve both the
time needed by the pricing problem as well as the overall required solving time.
For instance, instead of looking for the column with the best reduced cost, an
alternative might be to stop after the first column with negative reduced cost is
found. Moreover, in the current implementation we only generate one column at
a time when the pricing problem is called. Generating multiple columns at once
might also improve the solving speed of the B&P implementation.

Solving the LP relaxations of the master problem is, next to solving the pricing
problem, the most time consuming part of the B&P algorithm. For larger |J| and
| T| the master problem becomes very large during the solving process, and hence
solving the LP relaxations consumes more and more time. Column management
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strategies, that control the number of variables in the master problem, might further
decrease the total solving time. Moreover, one could also accept a non-optimal
solution to the master problem that is within a certain range from the best LP
bound.

Perhaps most importantly, we note that we studied a scheduling problem that
ignores some complex constraints from practice. We expect that for such constraints
it may be hard to include them in an extended mathematical programming formu-
lation, while keeping it solvable in a reasonable time. Hence, for more complex
and larger problems, we prefer B&P over mathematical programming as solution
methodology.

8.5 Conclusions

Many personnel scheduling methods first create shifts based on staffing levels,
and then create work schedules from this set of created shifts. In this chapter,
we outline why these rostering methods often have a hard time accounting for
employee specific preferences and characteristics. To create rosters directly from
staffing levels, which allows accounting for employee preferences when creating
shifts, we investigate a Branch-and-Price implementation. Due to the structure of
the Branch-and-Price method, we are able to isolate labor legislation in the col-
umn generation sub-problem, which makes it flexible and powerful. The flexibility
implies that it is not too difficult to extend the Branch-and-Price model to include
complex constraints derived from actual practice. Moreover, due to the structure
of Branch-and-Price methods, there is flexibility to deal with these "difficult’ con-
straints efficiently. Furthermore, Branch-and-Price methods also allow the use of
so-called ‘template shifts’; for the creation of work schedules based on shifts from
a predefined set of templates, which is an intuitive way for planners to control the
types of shifts that can be part of the work schedules.
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CHAPTER 9

A Flexible Iterative Improvement Heuristic to
Support Creation of Feasible Work
Schedules in Self-Scheduling

9.1 Introduction

In service industries, such as healthcare and security services, shifts have to be
staffed around the clock. Considering the many employee preferences and labor
legislation that are implied on schedules from such circumstances, it is often hard
to come up with good or fair shift schedules [54]. Self-scheduling is a way to better
cope with employee preferences leading also to an increased job satisfaction and
an improved employee commitment and cooperation [154, 164, 222].

Several self-scheduling processes exist in practice. The basic structure of these
processes is that employees propose a schedule by indicating for each day in the
schedule the shift they prefer to work, or whether they would like to have a day
off. These proposed schedules have to comply with labor legislation and meet con-
tract hours. The organization now evaluates the proposed schedules and has to
ensure that sufficient employees are assigned to each shift. If the joint schedules
of the employees do not meet these bounds, feedback information is provided to the
employees. Based on this information, employees may choose to update their pro-
posed schedules, for example by trading shifts with other employees. This process
leads to updated schedules that hopefully fulfill the demands. However, it may
happen that some shifts are still insufficiently staffed. In this case, the department
manager or a human shift planner has to decide which shifts to reassign.

The method proposed in this chapter is concerned with the final planning phase.
Our method operates independently of the actual self-scheduling process applied
by the organization. The input used by our method consists of a set of proposed
work schedules and a shift demand, indicating for each shift the minimum number of
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employees that have to be assigned to this shift. Given this input, understaffed and
overstaffed shifts are identified, whereby we refer to a shift as understaffed if less
employees have signed up for this shift than specified by the staffing demand and
overstaffed if the opposite holds. The method now has to resolve this unbalance
by reassigning shifts, taking into account several constraints and criteria.

The criteria used within our method are derived from case studies from practice.
The goal of our method is to minimize the total understaffing, while satisfying labor
legislation. This is accomplished using ‘shift swaps’ Shift swaps are defined by
an unassignment of a shift of some employee and an assignment of another shift
to the same employee. Essentially, our method iteratively selects combinations
of shift swaps in order to reduce the total understaffing as much as possible. By
including only shift swaps in the method that satisfy labor legislation we ensure
that our method does not violate labor legislation. Next to minimizing the total
understaffing and satisfying labor legislation, the considered case studies indicate
that the method has to be transparent, meaning that the planner should be able
to understand the method’s decisions. Besides this, a specified fraction of each
schedule proposed by the employees has to be retained, since otherwise employees
get discouraged to participate in the self-scheduling process. These requirements
are accomplished in our method by proper choices of parameter values.

Shift rostering instances as provided by the case studies are used to evaluate
the proposed method. In total, 72 instances were used. We analyze the influence
of various parameters on the work schedules produced by the method. The main
outcome is the observed trade-off between the total understaffing on the one hand
and the number of schedule changes on the other hand.

Our contribution is twofold. First, the designed method is flexible and easily
extendable, since the checking of labor legislation is an isolated component in our
approach. Labor legislation is checked in the method that defines the allowed
shift swaps, but not in the optimization method that selects the swaps to be ap-
plied. Second, the iterative nature of our method helps planners to understand the
decisions taken by the algorithm in each iteration, since only a limited number of
shift reassignments are performed in each iteration. This is especially the case if
in each iteration only one or only a few employees are allowed to get a changed
schedule.

This chapter is organized as follows. Section 9.2 discusses the related litera-
ture. Then, Section 9.3 provides a problem description and outlines our principal
solution approach. Next, Section 9.4 presents the mathematical implementation
of our solution approach and Section 9.5 discusses results on the instances de-
rived from the case studies. The chapter closes with conclusions and discussion
in Section 9.6.
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9.2 Literature review

Employee preferences, such as requests for a day off or to work some specific shift
on some specific day, are often quantified using soft constraints, see Chapter 3.
Optimizing the work schedules of individual employees, while satisfying hard sche-
duling rules is referred to as preference scheduling. Examples are presented in,
e.g. [32] and [217]. In [110] an auction model is proposed, where employees bid
on shifts and rest days using ‘points’. Shifts are awarded to employees based on
their bids. A mathematical program is used to check for feasibility and awarding
shifts.

Another way of handling employee preferences is self-scheduling. Qualitative
aspects of self-scheduling are discussed in, e.qg., [26] and [242]. Self-scheduling
starts with the organization specifying the staffing demand, i.e., specifying per
day how many employees have to be staffed on each shift. After that, employees
propose their preferred schedules. For each day in the planning horizon, the em-
ployees choose the shift they prefer, or whether they like to have a day off. This
proposed schedule has to satisfy labor legislation and other scheduling constraints
defined by the organization. The staffing resulting from the proposed schedules
of all employees is compared to the staffing demand identifying understaffed and
overstaffed shifts. In most self-scheduling processes, feedback information is pro-
vided to the employees. Based on some incentive, such as ‘scores’ for shifts,
employees may choose to change some of the shifts in their schedules, leading
hopefully to a decrease in the total understaffing. In some self-scheduling pro-
cesses, employees can negotiate about changing shifts, which [264] models as a
multi-agent model in which employees are represented by agents. For the remain-
ing understaffed shifts, mostly a human planner decides who works these shifts,
since the planner has the final responsibility to create work schedules without
understaffed shifts.

The main difference between preference scheduling and self-scheduling is that
the proposed schedules of the employees in self-scheduling have to satisfy labor
legislation, while in preference scheduling a schedule that satisfies all preferences
specified by the employees does not necessarily imply that this schedule is allowed
by labor legislation.

Algorithms that assist the human planner to decide which employee works
which understaffed shift are proposed in [18, 210, 225]. In [18], a method is pro-
posed that first unassigns overstaffed shifts. This is done in an iterative way by
first selecting an overstaffed shift, based on some priority rule, and then selecting
an employee to be unassigned from this shift, again based on some priority rule.
When this process is finished, understaffed shifts are assigned to employees in an
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analogous fashion. Next, several shift swapping and shift reassignment steps are
applied, which are similar to the shift reassignment steps considered in an analo-
gous approach of [210]. Whereas the algorithms proposed in [18] and [210] select
at most two shifts at a time, the method proposed [225] considers the complete
schedule. In addition to proposing schedules, employees prioritize between shifts
by specifying either a weak request, a strong request, or a veto for each shift.
Based on the proposed schedules and the requests, a mathematical program is
used to create a feasible schedules. The mathematical program reduces the total
understaffing while balancing the number of preferences honored per employee.

The objective in rescheduling applications is also to reassign shifts in order
to find a schedule without understaffed shifts [93, 183, 192, 193]. Rescheduling
is required if shifts get understaffed due to unexpected absences, for example due
to illness. The heuristics proposed in [192] and the genetic algorithm proposed
in [193] try to find a schedule without understaffed shifts while minimizing the
number of shift swaps. The research in [93] proposes a mathematical programming
approach that minimizes a weighted sum of the total overstaffing and the total
understaffing. The research in [183] proposes a genetic algorithm that also con-
siders shift preferences and distributes the workload after reconstructing the work
schedule.

This chapter proposes an iterative method to assist the planner in reducing
the total understaffing. We propose an iterative method, as opposed to [225],
such that planners can evaluate intermediate results. However, in our method,
multiple shift reassignments are allowed in a single iteration, which leads to a
more globalized optimization, as opposed to the iterative method proposed in [18]
that assigns or unassigns a single shift in every iteration. Moreover, as opposed
to other self-scheduling and rescheduling literature, the method proposed in this
chapter guarantees that some given fraction of each schedule that is proposed by
an employee is preserved by the algorithm.

9.3 Problem description and principal approach

In this section, we give a detailed problem description and discuss the principal
ideas underlying our approach.

9.3.1 Problem description

We are given a schedule period with a set of shifts K and a set of employees /.
For each shift k € K, a demand dy is specified that indicates the minimum number

116



9.3 Problem description and principal approach

of employees that have to be assigned to that shift. Note that a specific shift (e.g.,
a morning shift) on different days is represented by separate shifts in the set K.

For every employee i € /, we are given a proposed schedule S;. This schedule
specifies, for each day in the planning horizon, either the shift the employee
prefers to work or that the employee prefers to have a day off. We assume that
the proposed schedules satisfy all hard constraints implied on the schedules, e.qg.,
labor legislation, and that the overall contract hours of the employee over the
planning horizon are fulfilled.

Based on the proposed schedules, the difference between the specified staffing
demand dy and the actual staffing can be calculated for each shift k € K. The
differences are denoted by a difference parameter v, which indicates how far the
proposed schedules are away from the preferred situation. We define v, to be
positive for understaffed shifts and negative for overstaffed shifts. We introduce
scores oy for each shift k € K, which are given as a function of v, i.e., ox = f(w).
We define f to be increasing in the value of vi. So, for overstaffed shifts, oy is
smaller than for understaffed shifts. Using the scores ok, we calculate for each
employee i € | a score s; by summing up the scores of all shifts the employee
has in his schedule S;. An employee with a relatively high score s; has chosen
relatively many understaffed shifts and is thus doing well for the organization. For
employees with relatively low scores s;, the opposite holds.

The goal now is to change the schedules S; of the employees such that the total
understaffing and the total overstaffing, as expressed by v, is reduced. Hereby, we
have to ensure that the new schedules satisfy labor legislation and contract hours.
Moreover, an employee’s schedule should not change too much, since otherwise the
employee might get discouraged to propose schedules in the future. In addition, we
have to ensure that the burden of shift reassignments is divided fairly throughout
the employees.

First, in the next section, we present the principal ideas underlying our ap-
proach. A formal specifications of our method is given in Section 9.4.

9.3.2 Principal approach

To reduce the total understaffing and the total overstaffing, we apply ‘swaps’ in the
proposed schedules. A swap changes the schedule of an employee by unassigning
one of his shifts and assigning this employee to some other shift, whereby these
shifts do not have to be on the same day. To reduce the total understaffing and
the total overstaffing, a swap unassigns an overstaffed shift and assigns an under-
staffed shift. This means, that we do not allow that an overstaffed shift becomes
understaffed or that an understaffed shift becomes overstaffed. The reason for this
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is, that such changes lead to smaller fractions of the proposed schedules of the
employees to be retained, but do not contribute directly to the objective of reduc-
ing the total understaffing and the total overstaffing. For the same reason we also
exclude swaps from understaffed shifts to understaffed shifts and from overstaffed
shifts to overstaffed shifts. To make sure that the final schedule satisfies labor
legislation, we only allow swaps that comply with labor legislation. Moreover,
strict unavailabilities of employees are incorporated in the model by excluding
swaps that assign shifts to a day where an employee is strictly unavailable.

The proposed solution approach iteratively selects combinations of swaps,
where in each iteration at most one swap per employee is selected. Since each
swap satisfies labor legislation and labor legislations are defined per employee
and not for groups of employees, this implies that all employee schedules satisfy
labor legislation after applying swaps. The reason that we restrict to at most one
swap per employee per iteration is that a combination of two swaps that indi-
vidually are allowed by labor legislation, may not necessarily lead to an allowed
schedule. For example, if it is allowed to work at most 5 shifts consecutively, addi-
tional checks are required to make sure that a combination of two swaps satisfies
this constraint. Since, in general, labor legislation does not imply constraints
on the relation between schedules of different employees, we may apply swaps
at multiple employees simultaneously without having to include labor legislation
checks in the swap selection method. Therefore, we consider a subset of employ-
ees for whom we simultaneously apply swaps in an iteration. The maximum size
of this subset is an input parameter of the approach. Moreover, employees can
explicitly be excluded from this subset. For example, employees that already have
received a certain number of shift swaps may be excluded from receiving additional
shift swaps.

This approach has two advantages. First, note that labor legislation only
influences the selection of possible swaps, but does not interfere with finding a
good combination of swaps. In this way, labor legislation is an isolated component
in our approach. This component may be changed without the need to adapt the
other components. Second, the size of the subset of employees that is selected
in an iteration defines a trade-off between transparency of the approach on the
one hand and larger improvements in the schedule on the other hand. Applying a
single swap for one employee makes the decisions taken by the model easier to
understand, whereas applying swaps for multiple employees simultaneously leads,
in general, to larger improvements in the schedules.

Applying multiple swaps at one employee in one iteration makes decisions
taken by the model harder to understand for the planner and implies that we have
to include labor legislation checks in the mathematical model. As both of these are
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undesirable consequences, in our model we apply at most one swap per employee
in a single iteration.

9.4 Realization of the approach

To reduce the total understaffing and the total overstaffing, we apply an iterative
method, in which in every iteration a mathematical program is solved to select a
combination of swaps to apply. First, we discuss the mathematical programming
formulation, after which we present the details of our iterative approach.

9.4.1 Swap selection model

Given is a set of schedules {51,...,5“‘} at the start of the current iteration and
a vector of shift demands (d1,...,d“<|). For each employee i € /, a score §; is
calculated by summing the scores gy of the shifts k that are in the current schedule
S; of employee i. Note that the scores gy only depend on the value of v, and are
not updated during the iterative method.

For the swap selection, we introduce sets R;, which contain all possible swaps
for the employees i € /. Each swap r € R; is allowed by labor legislation and
unassigns an overstaffed shift and assigns an understaffed shift. For each swap
r € R;, a decision variable x; is introduced which denotes whether this swap r is
selected for employee i (x, = 1) or not (x, = 0), i.e.:

x€{01} reR, icl (9.4.1a)

As outlined in Section 9.3.2, in every iteration, at most one swap is selected per
employee. This is enforced by the constraint:

Y x<1iel (9.4.1b)

rer;

Also, we do not allow that an overstaffed shift becomes understaffed or the other
way around. For this, we introduce the set K9 C K that denotes the set of
overstaffed shifts, i.e.:

K® = {k € K|vx <0}

and the set KY C K that denotes the set of understaffed shifts, i.e.:
KY = {k € K|v > 0}.
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Next to the sets K and KY, we introduce a variable ny, which denotes the
difference between the staffing demand and the actual staffing after swaps have
been applied. Hence, ny is positive if shift k is understaffed after swaps have been
applied and negative if k is overstaffed after swaps have been applied. Let the
parameter ¥ denote the difference between the staffing demand and the actual
staffing at the start of the current iteration. Let Ul»k C R; contain all swaps that
unassign shift k from employee i, and let A¥ C R; contain the swaps that assign
shift k to employee i. Using the sets U¥ and A¥, we can calculate ny as follows:

ne=u+y (Y x—> x| kek. (9.4.1¢)

i€l \reUk reAk

Now, the following constraints ensure that overstaffed shifts do not become un-
derstaffed:

<0 keK® (9.4.1d)

and that understaffed shifts do not become overstaffed:
ng>0 ke kY. (9.4.1¢)

To evaluate the quality of a solution, we consider an objective function that has
two components. The first component is responsible for minimizing the total un-
derstaffing. The second component specifies that swaps should be applied in the
schedules of employees that have a low score 5;. The employees that have low
scores 5; at the start of the iteration are the employees that have relatively many
overstaffed shifts in their current schedule. Combining these two components leads
to the following objective:

mind > mc+A ) Si) . (9.4.1f)

keKY iel rer;

Note that the second component makes the swap selection more fair, since §;
influences the swap selection, meaning that employees with a low score a more
likely to get a shift reassignment. Also note that if the total overstaffing is smaller
than the total understaffing the first component cannot achieve the value 0. The
parameters Ay and A; are used to define the relative importance of the components.

The resulting model (9.4.1a)-(9.4.1f) is an integer linear program that can be
solved using standard solvers.
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9.4.2 Solution approach

To reduce the total understaffing and the total overstaffing, we apply an iterative
solution approach. Each iteration consists of three phases. First, a subset of
employees I” C | is selected. Second, for the employees in /', we determine the
set of possible swaps R;, and third, we select a combination of swaps to be applied
using the ILP model presented in Section 9.4.1.

Shift swaps are applied only to the schedules of the employees i € /. As
outlined in Section 9.3.2, the number of employees to include in the set /" is a model
parameter. In /', we include the employees with the smallest scores 3;. The scores
5; are calculated as explained in Section 9.4.1. Hence, this selection is influenced
by the scores oy that are determined by the function f. If an employee’s score 5;
is low, this employee has relatively many overstaffed shifts, which is undesirable
from an organizational point of view. Note that the scores 3; are updated after
swaps are applied.

Next, for each employee i € I’ the set of allowed swaps R; is determined. As
outlined in Section 9.3.2, we only allow swaps from overstaffed to understaffed
shifts. This assumption is relaxed later on in Section 9.4.3.

Given I’ and the corresponding sets R;, the mathematical program (9.4.1) is
used to determine the best combination of swaps. Note that, in every iteration,
the sets K@ and KV are based on the current schedules.

9.4.3 Extensions and discussion

In addition to swaps that unassign overstaffed shifts and assign understaffed shifts,
to which we refer as primary swaps, we optionally extend the approach with sec-
ondary swaps. A secondary swap is performed at two employees. The first em-
ployee is unassigned from an overstaffed shift and assigned to a shift for which
staffing demand is exactly matched; we refer to such a shift as a matching shift.
The second employee is unassigned from the same matching shift and assigned
to an understaffed shift. Note that secondary swaps explicitly assign from and
to matching shifts, since otherwise we could have applied a primary swap that
leads to the same reduction in overstaffed shifts, but retains a larger fraction of
the employees’ proposed schedules. Secondary swaps make it possible to reduce
the total overstaffing and understaffing in situations where primary swaps are not
able to do so.

To include secondary swaps in the method, swaps from overstaffed shifts to
matching shifts and swaps from matching shifts to understaffed shifts are included
in the sets R;. Let the set KM C K be the set of matching shifts, hence KM =
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K9 N KY. Constraints (9.4.1d) and (9.4.1e) ensure that ny remains 0 for k € KM.
Note that secondary swaps are a kind of ejection chains (with a length of 2). If
we would also include swaps from matching shifts to matching shifts in the sets
R:, we would allow the model to select even larger ‘swap-chains’.

Finally, it is interesting to include shift pattern preferences. For example,
employees often do not prefer to have isolated working days, i.e., a single shift
with days off on either side. Violations of these preferences and the correspond-
ing penalty weights can be calculated when creating swaps. In the objective
function, a trade-off between the minimization of understaffed shifts and violated
preferences can then be made. However, how this trade-off should be done is not
straightforward and we leave this for future research.

9.5 Case studies and results

This section studies the effects of various input parameters on the work schedules
produced by our approach. For this, we apply the developed approach to schedu-
ling instances based on data from the practice of several organizations. In Sec-
tion 9.5.1, we describe some important criteria for the solution approach that were
stated by these organizations. After that, Section 9.5.2 describes some character-
istics of the provided work schedules and Section 9.5.3 analyzes the performance
of our approach on these schedules.

9.5.1 Ciriteria from practice

We have asked a general hospital, a center for forensic psychiatry, a transportation
company, and a service company to indicate criteria that a solution approach has
to meet. This resulted in the following set of criteria:

1. Minimize the total understaffing.
Do not violate labor legislation.
At least 80% of each proposed work schedule must be preserved.

Decisions made by the approach have to be transparent.

LA

The computation time has to be short, i.e., at most a couple of minutes.

Criterion 1, 2, and 5, have straightforward explanations. Criterion 3 might
imply that understaffed shifts remain that could have been solved if a smaller per-
centage than 80% would have been permitted. However, the organizations indicate
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that if an insufficient part of the proposed schedules is preserved, employees are
discouraged to propose their preferred schedules in the future. The organizations
indicate that 80% is a suitable threshold. Note that, in our experimental results we
evaluate the effect of decreasing this percentage to 70%. Criterion 4 implies that
the algorithm should be such that planners are able to understand the decisions
taken by the algorithm and if necessary to explain them to managers or employees.
The first helps to stimulate the implementation success; the organizations expect
that planners will more easily accept a system that they understand. The second
may help to convince the employees to accept the system.

All these criteria can be handled in the proposed approach. Criterion 1 co-
incides with the objective (9.4.1f) of the mathematical program, which is used in
the iterations, if we set the values of A; and A, such that the first component of
objective (9.4.1f) dominates the second component. Furthermore, Criterion 2 can
be satisfied by only including swaps that do not violate labor legislation. Cri-
terion 3 can be realized by excluding employees from /" for which an additional
swap would imply that less than 80% of their schedules is preserved. Next to this,
Criterion 4 may be handled by including only one or a few employees in /" and
Criterion 5 asks for setting a time limit on the computation time.

9.5.2 Experimental setup

We are provided with final work schedules as executed by two departments of the
general hospital and by a department of the center for forensic psychiatry. In total,
these organizations provided 72 work schedules with a one-month planning horizon
and between 14 and 79 employees. The resulting shift occupancy determines the
shift demand used in the computational experiments. Since the executed work
schedules obviously match this demand exactly, we apply randomizations to the
executed work schedules to create work schedules that can be used to evaluate our
approach. Randomization is applied in two ways: to the executed work schedules,
and to the shift demand. Details of this generation process can be found in [252].

Looking at the overstaffed and understaffed shifts, the randomization leads to
two classes of work schedules:

1. Demand randomization. Weekly alternating overstaffed and understaffed
shifts. In these schedules, the following pattern is repeated every two weeks:
the first week contains overstaffed shifts, but no understaffed shifts. The sec-
ond week contains understaffed shifts, but no overstaffed shifts. On average,
these schedules contain a total understaffing of 30.1 shifts.

2. Schedule randomization. Overstaffed and understaffed shifts occur in each
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week of the schedule. On average, these schedules contain a total under-
staffing of 92.0 shifts.

Hence, these randomization imply two totally different ways of distributing the
understaffed and overstaffed shifts throughout the work schedules, which enables
us to evaluate whether our method is able to effectively handle these different
classes of work schedules. To analyze the results and assess the quality of the work
schedules produced by our approach, we consider two performance indicators: the
remaining total understaffing and the average fraction of the schedules proposed
by the employees that is retained.

For the organization, it is important that the total understaffing is minimized,
since understaffed shifts imply that an insufficient number of employees are staffed
on these shifts. If 3, une > Y ,cxo|nk|, we correct the remaining total un-
derstaffing by the difference, since in this case this difference is a lower bound
to the minimum ZkeKU ni and thereby, after this correction, the natural lower
bound on the total understaffing is 0. For the two classes of work schedules that
we consider, the mentioned total understaffing is the corrected total understaffing
that, in theory, can thus be reduced to 0.

For the employees, it is important that the fraction of their schedules that
is retained is as high as possible, since this implies that they get to work a
large fraction of the schedule they proposed. We calculate this fraction as the
number of days in the schedule of the employee where the assignment is unchanged
(tncluding days off) divided by the length of the planning horizon (in days).

9.5.3 Experimental results

We investigate the influence of the following five parameters on the results of the
proposed method: swap strateqgy, constraints on the minimum remaining fraction,
the size of I, the values of A; and Az, and the function f(v). For a detailed
results analysis we refer the reader to [252]. These results indicate that the latter
three parameters have no noticeable influence on the performance indicators for
reasonable choices of the parameters. The values we use for |I'| are |/'| = 1
and |I'l = 3. For (A1, A2), we compare (A, A2) = (1,0), which implies that the
objective only considers minimizing the total understaffing, with (A1, A2) = (1, €)
for some small € > 0, which implies that the minimization of the total understaffing
dominates the objective function, but that this minimization is quided by the scores
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5; of the employees. For the score function f(vx) we compared:

3 if v >0
fu)=4 2 if w=0 (9.5.1)
1 if vi <0
i di _ ‘employees that have chosen k'
_ v +di_ ‘employees that have chosen
flw) = de staffing demand shift k (95.2)

In this section, we focus our analysis on the effect of the minimum remaining
percentage and the swap strategy. For this, each of the 72 randomized schedules
is solved for each combination of parameter values. Hence, each schedule is solved
25 = 32 times. We have made these instances available for others to challenge
our results, see [234].

We start by investigating the influence of secondary swaps. For this, we apply
our approach with and without secondary swaps. Next, we check the influence of
the constraint on the fraction of the schedule that has to be retained. The orga-
nizations indicated that this fraction equals 0.8, which we are going to compare
with a fraction of 0.7.

First, we look at results for the first class of work schedules, where overstaffed
and understaffed shifts occur in alternating weeks. Table 9.1 shows the effects
of the bound on the minimum remaining fraction and the swap strategy on the
average remaining total understaffing (ARU) and the average remaining fraction
(ARF) of the schedules. Moreover, average and maximum computation times are
shown in Table 9.1. These averages were calculated from the various instances
that were solved using the various parameter values.

Table 9.1: Results for first class of work schedules

min. remaining = 80% min. remaining = 70%
ARU  ARF  Time (sec.) ARU  ARF  Time (sec)
Swaps avg  max avg  max
prim. 085 94.0% 1.6 47 072 939% 16 4.8

prim. & sec. 0.25 93.6% 1.7 5.2 0.14 935% 1.7 5.7

From Table 9.1 we observe that in all cases the average remaining total under-
staffing is reduced from 30.1 shifts to less than 1 shift. Furthermore, the influence
of secondary swaps on the achieved results is larger than that of the bound on the
minimum remaining fraction: using secondary swaps reduces the ARU by almost
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0.6 shifts compared to only using primary swaps, whereas reducing the bound from
80% to 70% leads only to an additional reduction of around 0.1 shifts. Further-
more, note that if the constraint on the remaining fraction is relaxed to 70%, the
resulting ARF is still far above 80% (around 93.5%). However, there are a few
employees that now retain less than 80% of their schedules; on average this holds
for less than 2% of the employees. We see that the average and maximum compu-
tation times are small and thus satisfy Criterion 5. In the appendix in Section 9.7,
Tables 9.3-9.5 present detailed results per instance.

For the second class of work schedules, where overstaffed and understaffed
shifts occur in the same week, we summarize the corresponding results in Table 9.2.

Table 9.2: Results for second class of work schedules

min. remaining = 80% min. remaining = 70%
ARU  ARF  Time (sec) ARU  ARF  Time (sec)
Swaps avg  max avg  max
prim. 149 89.7% 3.4 9.7 030 89.1% 33 115

prim. &sec. 131 89.6% 34 102 019 89.0% 33 119

Table 9.2 shows that the total understaffing is again reduced heavily: from on
average 92 shifts to less than 1.5 shifts. For this class of work schedules, the bound
on the minimum remaining fraction has a larger influence on the achieved results
than secondary swaps have: the ARU is reduced by over 1.1 shift if the bound
is relaxed from 0.8 to 0.7, whereas using secondary swaps in addition to primary
swaps leads only to an additional reduction of around 0.15 shifts. Furthermore,
if the constraint on the remaining fraction is set to 0.7, the ARF is again still
far above 0.8 (around 89.1%). However, in that case some employees retain less
than 80% of their schedule; on average this was the case for about 9.5% of the
employees.

In general, we observe that the method performs well. For both classes of
schedules, the remaining total understaffing is small, while on average 89% or
more of each employee proposed schedule is retained. For the first class of work
schedules, secondary swaps have the largest influence on the key performance
indicators: the remaining total understaffing and the average fraction of each
proposed schedule that is retained. We think the effect of secondary swaps is
larger here, since overstaffing and understaffing do not occur in the same week.
Then, swaps have to be applied that unassign a shift in one week, and assign
a shift in another. Since labor legislation implies restrictions on, for example,
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the number of shifts in a week and the number of consecutive shifts, secondary
swaps offer a source of flexibility that turns out to be useful. To the contrary,
for the second class of work schedules, the effect of decreasing the constraint on
the minimum remaining fraction has the largest influence, which is caused by the
larger understaffing in these schedules. Also swaps that swap shifts on the same
day are very often allowed by labor legislation, which implies a smaller need for
secondary swaps.

9.6 Conclusions and discussion

In this chapter, we have considered a problem occurring within self-scheduling
processes. In particular, we have studied how to reduce the total understaffing
and overstaffing resulting from work schedules proposed by employees. For this,
we have designed an iterative solution approach. In each iteration, the total under-
staffing is reduced by selecting shift swaps, i.e., an unassignment of an overstaffed
shift and an assignment of an understaffed shift to one and the same employee.
The swaps are selected using mathematical programming. Our method is flexible
in that labor legislation is an isolated component that may be adapted without
having to change the mathematical program. Moreover, the decisions taken in our
approach can be made very easy to trace and understand by the planner and the
employees. We interviewed four organizations to determine important criteria for
our self-scheduling method. These organizations have stated that the method has
to incorporate labor legislation, be understandable, and enforce that at least 80%
of an employee proposed schedule is preserved.

We have applied our approach to 72 work schedules with a one-month planning
horizon, which are based on work schedules provided by two organizations. These
work schedules, which we subdivided into two classes, contain on average a total
understaffing of 30.1 and 92 shifts, respectively. On average, our method reduces
this understaffing to less than 0.5 and 0.9 shifts, respectively. The remaining
total understaffing is mainly affected by two model parameters: the swap strategy
and the constraint on the minimum fraction of each schedule proposed by an
employee that must be retained. If overstaffed shifts and understaffed shifts occur in
alternating weeks, we observe that the total understaffing decreases by more than
1 shift if we include so-called secondary swaps in our swap strateqy. However, if
both overstaffed shifts and understaffed shifts occur in each week of the schedule,
the minimum remaining fraction has the largest influence on the remaining total
understaffing.

For further research, we suggest to study metaheuristic approaches, since the
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greedy local search character of our solution approach may cause that we block
possible future swaps. Note, however, that this influences the transparency of the
method, which was an important criterion in the design. From a practical point
of view, it is interesting to incorporate specific employee preferences that are not
necessarily honored by the proposed approach, such as ‘work 8 hour shifts’.
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9.7 Appendix. Detailed results

Table 9.3: Demand randomization - Case Forensic Psychiatry

min. remaining = 80%

min. remaining = 70%

ARU ARF  Time (sec.) ARU ARF  Time (sec.)

# Swaps avg  max avg  max
1 prim. 250 926 0.8 0.9 275 927 07 09

prim. &sec. 163 917 0.8 1.2 1.75 917 08 09

2 prim. 225 902 1.0 1.6 225 902 09 11

prim. &sec. 050 885 1.2 1.6 038 884 11 15

3 prim. 1.75 90.0 0.8 1.1 1.75 90.0 08 09

prim. &sec. 038 885 1.0 1.2 038 886 1.0 1.3

4 prim. 1.00 89.0 09 1.3 075 839 09 1.2

prim. &sec. 0.00 88.0 0.9 1.1 0.00 881 09 11

5  prim. 013 904 0.7 1.0 013 904 06 038

prim. &sec. 0.00 90.2 0.6 0.9 0.00 902 06 0.8

6 prim. 038 893 09 1.1 025 891 08 11

prim. &sec. 0.00 889 0.9 1.5 0.00 888 1.0 1.2

7 prim. 213 902 0.7 1.1 113 896 08 1.2

prim. &sec. 1.63 89.7 0.9 1.2 038 889 1.0 1.2

8 prim. 325 889 09 1.1 263 886 1.0 1.6

prim. &sec. 138 871 11 1.4 075 870 11 15

9 prim. 013 924 0.6 1.1 013 924 07 11

prim. &sec. 0.00 924 0.7 1.0 0.00 923 08 1.4

10  prim. 213 902 0.8 0.9 1.00 896 09 1.0
prim. &sec. 025 883 1.0 1.3 0.00 886 1.0 1.2

11 prim. 350 906 0.9 1.1 275 902 09 1.0
prim. &sec. 1.63 889 1.1 1.4 063 882 12 15

12 prim. 263 896 1.0 1.5 238 895 09 1.2
prim. &sec. 075 88.1 1.2 1.3 050 879 11 1.3
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Table 9.4: Demand randomization - General Hospital Department 1

min. remaining = 80% min. remaining = 70%
ARU ARF  Time (sec.) ARU ARF Time (sec)
#  Swaps avg  max avg  max
1 prim. 013 958 09 1.5 013 958 11 24
prim. &sec. 0.00 958 0.9 2.0 0.00 958 1.0 21
2 prim. 013 954 1.2 1.9 013 954 11 17
prim. &sec. 0.00 954 1.2 1.9 0.00 94 12 21
3 prim. 063 945 1.8 2.2 025 944 17 23
prim. &sec. 0.00 943 1.9 25 0.00 944 19 27
4 prim. 038 943 17 25 038 943 17 27
prim. &sec. 0.00 942 1.7 2.7 0.00 943 18 27
5  prim. 025 944 20 25 025 944 20 24
prim. &sec. 0.00 943 2.1 2.9 0.00 943 21 27
6 prim. 188 953 24 2.7 1.63 952 24 27
prim. &sec. 025 948 27 31 013 948 27 31
7 prim. 0.00 96.0 09 1.2 0.00 960 10 1.2
prim. &sec. 0.00 96.0 0.9 1.2 0.00 960 09 13
8 prim. 113 955 27 3.8 113 955 26 34
prim. &sec. 0.00 953 3.0 4.2 0.00 9.3 29 338
9 prim. 0.00 963 1.0 1.3 000 963 1.0 13
prim. &sec. 0.00 963 1.0 1.3 000 963 09 13
10  prim. 1.00 96.0 23 25 088 96.0 22 24
prim. &sec. 013 957 25 3.1 0.00 957 25 28

11 prim. 063 958 24 29 063 958 24 31
prim. &sec. 0.00 956 27 35 0.00 956 26 37
12 prim. 0.00 951 22 2.7 0.00 951 21 26

prim. &sec. 0.00 951 2.1 2.7 0.00 951 21 27




9.7 Appendix. Detailed results

Table 9.5: Demand randomization - General Hospital Department 2

min. remaining = 80% min. remaining = 70%
ARU ARF  Time (sec) ARU ARF Time (sec)
# Swaps avg  max avg  max
1 prim. 013 956 1.9 3.6 013 956 23 41
prim. &sec. 000 956 2.0 4.0 0.00 956 22 43
2 prim. 0.00 966 1.2 1.6 0.00 96 11 14
prim. &sec. 0.00 966 1.2 1.5 0.00 966 11 1.4
3 prim. 0.00 964 22 2.7 0.00 964 22 26
prim. &sec. 000 964 2.2 2.7 0.00 964 23 26
4 prim. 013 965 1.3 2.8 013 965 1.4 28
prim. &sec. 000 965 1.4 3.6 0.00 95 15 338
5 prim. 0.00 954 23 29 0.00 954 23 3.0
prim. &sec. 000 954 22 3.0 0.00 954 22 29
6 prim. 0.00 966 1.8 2.4 0.00 96 19 24
prim. &sec. 000 966 1.7 2.2 0.00 96 18 22
7 prim. 0.00 96.8 1.1 1.6 0.00 968 1.0 15
prim. &sec. 0.00 96.8 1.1 1.8 0.00 968 1.1 17
8 prim. 063 966 29 3.8 038 966 28 338
prim. &sec. 013 965 3.1 41 0.00 965 29 43
9 prim. 0.00 964 1.3 1.7 0.00 964 12 17
prim. &sec. 0.00 964 14 1.8 0.00 964 13 1.8
10 prim. 025 96.2 31 45 025 96.2 31 438
prim. &sec. 000 96.1 3.3 4.9 0.00 96.1 33 5.1
11 prim. 1.00 964 4.0 47 1.00 964 39 47
prim. &sec. 013 963 45 52 013 963 45 57
12 prim. 075 96.8 3.5 4.5 075 968 3.6 4.4

prim. &sec. 0.13 96.7 3.8 5.0 013 96.7 37 47
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Table 9.6: Schedule randomization - Forensic Psychiatry

min. remaining = 80% min. remaining = 70%

ARU ARF  Time (sec.) ARU ARF Time (sec)

#  Swaps avg  max avg  max
1 Prim 1.88 825 13 1.6 1.25 822 14 17
prim. &sec. 1.63 822 1.4 1.9 1.00 820 17 20

2 prim. 10.25 81.0 15 2.0 138 763 1.8 26
prim. &sec. 10.13 809 15 2.0 063 755 19 23

3 prim. 175 838 1.2 15 000 827 1.0 14
prim. &sec. 138 834 1.2 1.6 0.00 827 1.0 1.4

4 prim. 0.00 904 05 0.7 0.00 904 05 07
prim. &sec. 0.00 904 05 0.7 0.00 904 06 038

5  prim. 050 849 11 1.3 0.00 846 09 1.2
prim. &sec. 013 846 1.2 1.5 0.00 846 09 1.2

6 prim. 513 837 13 1.7 038 808 15 19
prim. &sec. 4.00 828 1.4 1.9 0.00 805 1.7 23

7 prim. 150 850 1.1 1.5 0.00 843 10 1.4
prim. &sec. 138 849 1.2 1.6 000 843 11 15

8 prim. 0.88 841 13 1.8 000 836 1.0 14
prim. &sec. 075 841 1.2 1.4 0.00 836 1.1 15

9 prim. 588 837 1.8 2.3 013 808 20 25
prim. &sec. 538 833 1.8 2.1 0.00 807 20 25

10  prim. 11.38 829 17 2.0 475 789 19 25
prim. & sec. 1138 829 1.7 2.2 413 783 20 24

11 prim. 050 850 1.4 1.8 000 844 12 20
prim. &sec. 050 850 1.4 1.6 0.00 844 11 14

12 prim. 1.00 842 13 1.7 013 837 12 17
prim. &sec. 050 838 1.4 1.9 0.00 835 1.2 17
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9.7 Appendix. Detailed results

Table 9.7: Schedule randomization - Case General Hospital Department 1

min. remaining = 80%

min.

remaining = 70%

ARU ARF Time (sec) ARU ARF  Time (sec.)

# Swaps avg  max avg  max
1 prim. 525 875 52 64 175 86.8 71 8.0
prim. & sec. 4.00 871 55 73 038 864 7.2 8.1

2 prim. 0.00 979 0.8 1.0 0.00 979 0.8 1.1
prim. &sec. 0.00 979 0.7 1.0 0.00 979 0.8 1.2

3 prim. 0.25 908 35 3.9 0.00 090.7 34 41
prim. &sec. 025 908 35 40 0.00 90.7 3.5 4.1

4 prim. 0.00 924 338 49 0.00 924 40 5.6
prim. & sec. 0.00 924 3.8 49 0.00 924 39 541

5 prim. 350 89.1 84 9.7 075 886 99 115
prim. &sec. 350 891 85 102 075 886 103 11.9

6 prim. 0.00 903 37 42 0.00 090.2 37 42
prim. & sec. 0.00 903 3.8 44 0.00 090.2 36 4.2

7 prim. 0.00 923 37 47 0.00 922 3.7 47
prim. & sec. 0.00 923 3.8 46 0.00 0922 36 46

8 prim. 0.00 91.2 49 52 0.00 91.2 42 48
prim. &sec. 0.00 912 5.0 54 000 91.2 4.1 4.5

9 prim. 0.00 945 22 29 0.00 945 22 341
prim. & sec. 0.00 945 22 31 0.00 945 23 3.0

10  prim. 0.00 922 39 54 0.00 922 37 49
prim. & sec. 0.00 922 3.8 52 0.00 0922 36 5.0

11 prim. 0.00 928 4.0 52 0.00 928 36 4.6
prim. & sec. 0.00 928 3.9 52 0.00 928 35 46

12 prim. 0.00 919 35 46 0.00 91.8 34 45
prim. &sec. 0.00 919 36 47 000 91.8 3.3 4.4
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Table 9.8: Schedule randomization - General Hospital Department 2

min. remaining = 80% min. remaining = 70%

ARU ARF Time (sec.) ARU ARF  Time (sec.)

# Swaps avg  max avg  max
1 prim. 0.00 971 1.6 1.8 000 971 1.6 2.0
prim. &sec. 0.00 971 1.6 21 0.00 971 16 2.0

2 prim. 0.00 935 4.2 53 0.00 934 43 5.4
prim. &sec. 0.00 935 4.2 51 000 934 43 5.6

3 prim. 0.00 973 1.4 1.8 000 973 15 1.8
prim. &sec. 0.00 973 1.5 1.7 000 973 15 1.9

4 prim. 0.00 903 6.1 74 000 903 54 6.6
prim. &sec. 0.00 903 6.2 77 0.00 903 53 6.1

5 prim. 0.75 908 6.8 91 0.00 907 57 7.0
prim. &sec. 025 907 71 100 0.00 90.7 56 7.0

6 prim. 0.00 929 41 47 0.00 928 3.8 4.8
prim. &sec. 0.00 929 41 49 0.00 928 39 4.8

7 prim. 338 911 8.1 85 025 905 75 9.6
prim. &sec. 213 90.8 8.7 92 000 905 75 102

8 prim. 0.00 918 51 6.1 0.00 91.7 43 5.8
prim. &sec. 0.00 91.8 5.0 6.0 000 917 44 6.3

9 prim. 0.00 916 56 6.3 0.00 915 55 6.9
prim. &sec. 0.00 916 5.6 6.5 000 915 55 6.6

10  prim. 0.00 90.0 6.9 80 000 900 61 7.4
prim. &sec. 0.00 90.0 7.1 81 0.00 90.0 6.2 7.5

11 prim. 0.00 94.0 49 6.1 0.00 940 47 53
prim. &sec. 0.00 940 49 6.2 000 940 47 5.8

12 prim. 0.00 940 35 47 0.00 940 36 47

prim. &sec. 0.00 940 35 47 000 940 3.6 4.8
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CHAPTER 10

Epilogue

Efficient personnel schedules are important considering that personal wages form
a major part of the operational expenses of many organizations. As indicated
by the recent literature review by Bergh et al. [255]: “there are still some great
opportunities in finding algorithms that efficiently cope with employee preferences”.
The research in this dissertation is an exploration in that direction. We develop
and analyze algorithms that are able to efficiently cope with specific requests and
preferences of individual employees in various personnel planning and scheduling
decisions. In addition, they help to have the right professional available at the
right time. Moreover, most of the developed algorithms are applied or implemented
in practice. Here, we discuss how personnel preferences are incorporated in the
algorithms and implementations discussed in this dissertation.

First, we have shown that decomposition techniques are able to effectively han-
dle preferences of individual employees in personnel scheduling. The idea behind
the studied decompositions is to address the important preferences of employees
first, such that they are matched as good as possible. We are the first to propose
a method that focuses on the scheduling of weekend shifts in the first phase of a
decomposition approach, resulting in high-quality weekend work schedules. Cre-
ating schedules by first assigning weekend shifts also reflects how schedules are
often created manually.

Furthermore, we show that successful applications of annualized hours poten-
tially permit significant savings. Unfortunately, in the Netherlands, most hospitals
use annualized hours as a ‘correction mechanism’, i.e,, if an employee works too
many hours in one month, this is compensated in the next month. We illustrate
that a prospective application of annualized hours offers a potential savings of 5.2%
for a department of a Dutch hospital. For employers, to successfully implement
annualized hours, it is important to make good mutual agreements with individual
employees. Hence, mathematical methods should, and as we show can, specifically
support incorporation of individualized agreements.
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Epilogue

In addition, we discuss a self-scheduling application. Increasingly, organi-
zations start to use some form of self-scheduling and this topic has also gained
interest in the literature. With regard to employee preferences, self-scheduling
has huge potential, since employee preferences are explicitly considered in self-
scheduling. Key success factor for self-scheduling is the involvement of employees,
who have to get actively involved to propose schedules and negotiate about re-
quired shift reassignments. Reassignments are needed if the schedules proposed
by the employee do not match with the staffing requirements of the organization.
Mathematical methods that assist with rescheduling decisions, such as the one
proposed in this dissertation, contribute to the success of self-scheduling.

Next to carefully considering personnel preferences, we believe that another
important aspect in algorithmic designs is that the business user should be able
to understand and steer the outcomes of the algorithms. The mentioned decompo-
sition approaches contribute to this since the different parts of the decomposition
focus on specific parts of the optimization problem, making it better tractable for
the business user. Furthermore, the decompositions resemble how schedules are
often created manually. The iterative approach applied to the discussed self-
scheduling application allows to evaluate intermediate results and adjust these
where required, which makes this approach tractable from a user perspective.

Although this dissertation reveals several mathematical challenges open for
further research, we believe that the most important challenge lies with imple-
mentations in practice. The research in this dissertation is based on practical
studies or applications, and we encourage additional research in this direction.
Many of the algorithm designs explicitly consider that the algorithms should en-
able business users to understand and effectively steer the outcomes of these
methods. We believe that this aspect, combined with the incorporation of em-
ployee specific preferences, will be instrumental in the implementation success of
personnel planning and scheduling algorithms.
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CHAPTER 11

Summary

The personnel of an organization often has two conflicting goals. Individual employees
like to have a good work-life balance, by having personal preferences taken into account,
whereas there is also the common goal to work efficiently.

By applying techniques and methods from Operations Research, a subfield of applied
mathematics, we show that operational efficiency can be achieved while taking personnel
preferences into account. In the design of optimization methods, we explicitly consider
that these methods should enable the business users to understand and effectively steer
the outcomes of these methods.

Designing such methods, and applying these to personnel scheduling methods is at
the core of the research in this dissertation.

The content of this dissertation is summarized in this chapter.

Chapter 2: Research Relevance and Outline

In Chapter 2, we motivate that employee preferences should be carefully considered in
personnel planning and scheduling. In service industries, especially in healthcare, personnel
wages are a major part of the operational expenses. Hence, efficient personnel schedules
help to control operational expenses. In addition, aging populations imply that on the one
hand demand is increasing, and on the other hand that the relative size of the ‘working
population’ becomes smaller, which stresses a need for efficient personnel scheduling. In this
dissertation, we discuss various operations research methods and practice implementations
that address requests and preferences of individual employees on different levels of planning
and scheduling. In addition, Chapter 2 gives a short introduction into Operations Research,
and provides a brief description of the research environment.

Chapter 3: Terminology and Literature Survey

Chapter 3 discusses how the literature considers preferences and characteristics of individ-
ual employees in personnel planning and scheduling decisions. Furthermore, it introduces
a terminology for personnel planning and scheduling decisions, and provides an overview
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of the various personnel preferences and characteristics that are considered in the litera-
ture. Next to this, Chapter 3 outlines how mathematical optimization methods incorporate
these preferences and characteristics. Finally, in Chapter 3, we point to some interesting
research directions and discuss how the research in this dissertation provides steps in those
directions.

Chapter 4: Cost-Efficient Staffing under Annualized Hours

Chapter 4 studies how flexibility in workforce capacity can be used to efficiently match
workforce capacity and demand. Flexibility in workforce capacity is introduced by the
annualized hours regime. Annualized hours allow organizations to measure working time
per year, instead of per month or per week, thereby allowing organizations to let employees
work more hours in one week and less in another. An additional source of flexibility is hiring
employees with different contract types, such as full-time, part-time, and min-max, and by
hiring subcontractors.

In Chapter 4, we propose a mathematical programming formulation that incorporates
annualized hours and shows to be very flexible with regard to modeling various contract
types. The objective of the model is to minimize salary cost, thereby covering workforce
demand, and using annualized hours. The model is able to address various business ques-
tions regarding tactical workforce planning problems, e.g., with regard to annualized hours,
subcontracting, and vacation planning. In a case study for a Dutch hospital, we demonstrate
that applying annualized hours potentially saves up to 5.2% in personnel wages annually.

Chapter 5: Staffing under Annualized Hours Using Cross-Entropy Optimization

In Chapter 5, a Cross-Entropy optimization implementation is proposed to solve an annu-
alized hours model that is strongly related to the model of Chapter 4. The goal is to select
a cost-efficient set of employees that is supposed to cover a given workforce demand, under
the annualized hours regime.

Our experimental results show that Cross-Entropy optimization is efficient across a
broad range of instances, where real-life sized instances are solved in seconds, which sig-
nificantly outperforms a mathematical programming formulation that is solved with CpLEx.
In addition, the solution quality of Cross-Entropy closely approaches the optimal solu-
tions obtained by CpLex. Thereby, our Cross-Entropy implementation offers an outstanding
method for real-time decision making, for example in response to unexpected staff illnesses,
and scenario analysis.

Chapter 6: Shift Rostering Using Decomposition: Assign Days Off First

Chapter 6 studies a two-phase decomposition approach to solve the shift rostering problem.
The first phase creates a days off schedule, indicating working days and days off for each
employee. The second phase assigns shifts to the working days in the days off schedule.
This decomposition is motivated by the fact that personnel scheduling constraints are often
divided in two categories: one that specifies constraints on working days and days off,
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while the other specifies constraints on shift assignments. To assess the performance of the
decomposition approach, we apply it to public benchmark instances, and compare this to
an approach that solves the personnel scheduling problem directly. We use mathematical
programming to solve the various shift rostering formulations. We also study the extension
that includes night shifts, in addition to days off, in the first phase of the decomposition.

Chapter 6 presents a detailed results analysis, and analyzes the effect of various in-
stance parameters on the decompositions’ results. In general, the decompositions signifi-
cantly reduce the computation time and produce good solutions for most instances.

Chapter 7: Shift Rostering Using Decomposition: Assign Weekend Shifts First

Chapter 7 introduces a shift rostering problem that surprisingly has not been studied in
the literature: the weekend shift rostering problem. It is motivated by our experience
that employees’ shift preferences predominantly focus on the weekends, since many social
activities happen during weekends. The weekend shift rostering problem addresses the
rostering of weekend shifts, for which we have designed a problem specific heuristic. In
this chapter, we consider the weekend shift rostering problem as the first phase of the shift
rostering problem. To complete the schedule, the second phase assigns the weekday shifts
using an existing algorithm. We discuss effects of this two-phase approach both on the
weekend work schedule and on the schedule as a whole. We demonstrate that our method
is effective both on real-life instances and on public benchmark instances. For situations
where the weekend work schedule is one of the key determinants of the quality of the
complete schedule, our two-phase approach shows to be effective when incorporated in a
commercially implemented algorithm.

Chapter 8: Shift Rostering from Staffing Levels: a Branch-and-Price Approach

In Chapter 8, we outline an approach that creates work schedules directly from staffing
levels. This in contrast with many scheduling methods that first create shifts based on
staffing levels, and afterwards create work schedules from the set of created shifts. Our
proposed approach offers flexibility with respect to incorporating employee preferences
in the creation of work schedules. When creating work schedules directly from staffing
levels, employee preferences can be considered effictively when defining shifts. To solve
the underlying combinatorial optimization model, we compare a Branch-and-Price (B&P)
formulation with a mathematical programming formulation. The mathematical programming
approach outperforms B&P in most cases, but we believe B&GP to be better able to handle
extra scheduling and employee preference constraints.

Chapter 9: An lterative Improvement Heuristic to Support Self-Scheduling

Chapter 9 studies a self-scheduling application. Self-scheduling is receiving more and more
attention in the literature and in practice. With self-scheduling, employees propose their
personal work schedule they prefer to work during a given planning horizon. However, these
schedules often do not match with the staffing demand as specified by the organization.
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Chapter 9, presents an approach to support creating feasible work schedules that uses the
work schedules proposed by the employees as input and that aims to divide the burden of
shift reassignments ‘fair’ among the employees. Computational results are discussed and
we indicate how performance indicators of the resulting schedules can be influenced through
various model parameters. The presented approach is flexible and easily extendable, since
labor rule checks are isolated from the actual algorithm, which makes it easy to include
additional labor rules in the approach. Moreover, our approach enables the user to make
a trade-off between the quality of the resulting roster and the extent to which the planner
is able to track the decisions of the algorithm.

Conclusions

This dissertation discusses various personnel planning and scheduling applications. Per-
sonnel preferences are an important topic throughout the dissertation. Although we reveal
several mathematical challenges open for further research, we believe that the most impor-
tant challenge lies with implementing these methods in practice. We think it is important
that the design of these methods enable the business users to understand and effectively
steer the outcomes of these methods. The research in this dissertation is based on practical
studies or applications, and we encourage additional research in this direction. Many of
the algorithm designs explicitly consider that the algorithms should enable business users
to understand and effectively steer the outcomes of these methods. We believe that this as-
pect, combined with the incorporation of employee specific preferences, will be instrumental
in the implementation success of personnel planning and scheduling algorithms.
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CHAPTER 12

Samenvatting (Dutch Summary)

Het personeel van een organisatie heeft vaak twee tegenstrijdige belangen. Aan de
ene kant wil ieder individu graag een goede balans tussen werk en privé door roosters
en planningen te hebben waarin zijn persoonlijke wensen en voorkeuren meegenomen
worden. Aan de andere kant is er een algemeen belang om efficiént te werken.

Door technieken en methoden toe te passen uit de Operations Research (Neder-
lands: “Besliskunde”), een vakgebied binnen de toegepaste wiskunde, laten we zien
dat rekening houden met voorkeuren van individuen niet ten koste hoeft te gaan van de
efficiency. In het ontwerp van deze methoden nemen we expliciet mee dat gebruikers van
deze methoden in staat moeten zijn de methoden te begrijpen en de uitkomsten effectief
te kunnen sturen.

Het ontwerpen van dit soort methoden en het toepassen ervan op personeelsplanning
en personeelsroostering vormt de kern van het onderzoek in dit proefschrift.

De inhoud van dit proefschrift is samengevat in dit hoofdstuk.

Hoofdstuk 2: Motivatie en overzicht

In hoofdstuk 2 beschrijven we waarom het belangrijk is medewerkervoorkeuren mee te ne-
men in personeelsplanning. In de dienstverleningssector, met name in de gezondheidszorg,
wordt het grootste deel van de operationele uitgaven gevormd door personeelskosten. Een
efficiénte personeelsplanning draagt daarom bij aan het beheersen van operationele kosten.
Door de vergrijzing wordt het belang van een efficiénte personeelsplanning verder onder-
schreven, omdat dit aan de ene kant zorgt voor een toenemende zorgvraag, maar aan de
andere kant ook voor een relatief kleiner wordende ‘werkende populatie’. Zoals we in hoofd-
stuk 1 beargumenteren is het voor een efficiénte personeelsplanning belangrijk voorkeuren
van medewerkers expliciet mee te nemen in personeelsplanning. In dit proefschrift komen
verschillende besliskundige modellen en praktijkimplementaties aan de orde die focussen
op het meenemen van medewerkervoorkeuren in personeelsplanning.

Naast het onderzoeksonderwerp geeft hoofdstuk 2 een beschrijving van Operations
Research. Daarnaast beschrijft hoofdstuk 2 de organisaties die betrokken zijn bij dit on-
derzoek.
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Hoofdstuk 3: Terminologie en literatuuroverzicht

Hoofdstuk 3 geeft een overzicht van de literatuur op het gebied van personeelsplanning en
personeelsroostering en beschrijft hoe deze literatuur voorkeuren en eigenschappen van in-
dividuele medewerkers meeneemt in personeelsplanning. We geven in dit hoofdstuk aan hoe
en welke medewerkervoorkeuren en eigenschappen in de literatuur gemodelleerd worden.
Daarnaast wordt in hoofdstuk 3 een terminologie voor personeelsplanningsbeslissingen ge-
introduceerd. Ten slotte identificeren we interessante onderzoeksrichtingen en geven we
aan hoe dit proefschrift bijdraagt in die onderzoeksrichtingen.

Hoofdstuk 4: Kostenefficiénte capaciteitsplanning door een planmatige toepassing van jaar-
urensystematiek

Hoofdstuk 4 onderzoekt hoe flexibiliteit in personeelsinzet gebruikt kan worden om vraag
en aanbod van personeel op elkaar af te stemmen. De jaarurensystematiek biedt hierbij
een vorm van flexibiliteit. De jaarurensystematiek laat toe dat de gewerkte uren van een
medewerker gemeten worden op jaarniveau in plaats van op week- of maandniveau. Dit
staat organisaties toe om medewerkers meer uren te laten werken in de ene week dan in de
andere. Daarnaast bieden verschillende contractvormen, zoals fulltime, parttime, min-max
en nuluren, naast uitzendkrachten, nog een andere bron van flexibiliteit.

In hoofdstuk 4 formuleren we een mathematisch programma dat zowel de jaaruren-
systematiek als verschillende contractvormen modelleert. De doelstellingsfunctie van het
mathematisch programma minimaliseert salariskosten, onder de beperking dat de vraag naar
personeel gewaarborgd moet zijn. Zoals we in het hoofdstuk laten zien is het model in staat
ondersteuning te bieden voor het beantwoorden van verschillende tactische personeelsplan-
ningsvraagstukken met betrekking tot jaarurensystematiek, inhuur van uitzendkrachten en
vakantieplanning. In een casus voor een Nederlands ziekenhuis laten we zien dat het plan-
matig toepassen van jaarurensystematiek een potentiéle jaarlijkse besparing van 5,2% op
personeelskosten oplevert.

Hoofdstuk 5: Kostenefficiénte capaciteitsplanning door een planmatige toepassing van jaar-
urensystematiek met behulp van Cross-Entropy optimalisatie

In hoofdstuk 5 wordt een Cross-Entropy optimalisatie model geformuleerd dat net als hoofd-
stuk 4 een planmatige toepassing van jaarurensystematiek modelleert. Het doel van dit
model is een kostenefficiénte selectie van medewerkers te maken, die samen de vraag naar
personeel afdekt, waarbij gebruik gemaakt wordt van de flexibiliteit van de jaarurensyste-
matiek.

Rekenresultaten laten zien dat Cross-Entropy optimalisatie op een brede set van testin-
stanties goede oplossingen geeft, waarbij instanties met een realistische omvang in enkele
seconden worden opgelost, wat beduidend sneller is dan een mathematisch programma dat
opgelost wordt met CpLex. Daarnaast ligt de oplossingskwaliteit van Cross-Entropy opti-
malisatie dichtbij de optimale oplossing van CpLEx. Onze Cross-Entropy implementatie is
daarmee een uitstekend instrument voor real-time beslissingsondersteuning, bijvoorbeeld
bij onverwachte absenties, en voor scenario-analyses.
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Hoofdstuk 6: Dienstroostering via decompositie: plan vrije dagen eerst

In hoofdstuk 6 introduceren en analyseren we een twee-fasen decompositiemodel om dienst-
roosters op te stellen. De eerste fase richt zich op het opstellen van een vrije dagen rooster,
welke aangeeft op welke dagen medewerkers moeten werken en op welke dagen ze vrij zijn.
De tweede fase wijst diensten toe aan de dagen waarop de medewerkers werken. Deze
decompositie wordt gemotiveerd door het feit dat dienstroosterbeperkingen zich vaak laten
splitsen in twee groepen: een groep die beperkingen specificeert ten aanzien van werkdagen
en vrije dagen en een groep die beperkingen specificeert ten aanzien van specifieke dienst-
toewijzingen. Om de kwaliteit van deze decompositie aanpak te toetsen passen wij deze toe
op een aantal publieke benchmark instanties en vergelijken wij dit met een modelaanpak
die een rooster creéert zonder decompositie. We gebruiken mathematisch programmeren
om de verschillende dienstroosterproblemen op te lossen. Verder beschouwen we ook een
decompositie variant die naast vrije dagen ook de nachtdiensten roostert in de eerste fase
van de decompositie aanpak.

Hoofdstuk 6 analyseert de resultaten in detail en analyseert het effect van verschillende
karakteristieken van de roosterinstanties op de resultaten van de decompositie aanpak. In
het algemeen concluderen we dat de decompositie de oplossingstijd sterk verkort en dat
voor de meeste instanties goede kwaliteit roosters worden gevonden.

Hoofdstuk 7: Dienstroostering via decompositie: plan weekenden eerst

Hoofdstuk 7 introduceert een roosterprobleem dat verrassend genoeg nooit eerder beschre-
ven is in de literatuur: het weekenddienstrooster probleem. Het weekenddienstrooster
probleem komt voort uit onze ervaring dat medewerkervoorkeuren voor een groot deel fo-
cussen op weekenden, aangezien veel sociale activiteiten in het weekend plaatsvinden. Het
weekenddienstrooster probleem richt zich op het roosteren van weekenddiensten, waarvoor
wij een probleem specifieke heuristiek hebben ontwikkeld. In dit hoofdstuk, beschouwen
wij het weekenddienstrooster probleem als de eerste fase van het opstellen van dienst-
roosters. Om een compleet dienstrooster op te stellen, worden de doordeweekse diensten
in een tweede fase geroosterd. Voor die stap gebruiken we een bestaand algoritme. We
analyseren het effect van deze tweestapsmethode op het weekendrooster en op het rooster
als geheel. We laten zien dat onze weekendrooster heuristiek goede resultaten behaald op
praktijk instanties en publieke benchmark instanties. We hebben deze heuristiek geimple-
menteerd in een commercieel algoritme, wat effectief blijkt te zijn wanneer de kwaliteit van
het weekendrooster één van de belangrijkste graadmeters van het dienstrooster als geheel
is.

Hoofdstuk 8: Roosteren direct vanuit bezettingseisen: een Branch-and-Price toepassing

In hoofdstuk 8 ontwikkelen we een roostermethode die dienstroosters creéert direct vanuit
bezettingseisen. Dit in tegenstelling tot vele andere methoden die eerst diensten maken
op basis van bezettingseisen en vervolgens roosters maken op basis van de set van gecre-
éerde diensten. Onze aanpak kan flexibel omgaan met specifieke medewerkervoorkeuren.
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Wanneer roosters direct vanuit bezettingseisen worden opgesteld, kunnen medewerker-
voorkeuren goed meegenomen worden bij het definiéren van diensten. Om het onderlig-
gende combinatorische optimalisatieprobleem op te lossen vergelijken we een zogenaamde
Branch-and-Price (B&P) formulering met een mathematisch programmeerformulering. De
studie hier betreft met name een onderzoek of deze modellen werken voor dit type probleem.
We zien dat mathematisch programmeren in veel gevallen beter presteert dan B&P, maar we
verwachten dat B&GP beter in staat is om te gaan met additionele roosteringsbeperkingen
en medewerkervoorkeuren.

Hoofdstuk 9: Een flexibele iteratieve verbeterheuristiek om dienstroosters op te stellen in
zelfroosteren

Hoofdstuk 9 behandelt een zelfroostertoepassing. Zelfroosteren is een concept dat meer en
meer aandacht krijgt vanuit zowel de literatuur als de praktijk. Met zelfroosteren stellen
medewerkers zelf hun persoonlijke roosters voor die zij willen werken. Echter alle per-
soonlijke roosters bij elkaar voldoen niet noodzakelijkerwijs aan de dienstbezetting die is
gespecificeerd door de organisatie. Hoofdstuk 9 stelt een methode voor om roosters the ma-
ken die voldoen aan de gespecificeerde dienstbezetting op basis van door de medewerkers
voorgestelde roosters. Deze methode heeft als doel diensten ‘eerlijk’ te herverdelen over de
medewerkers. Aan de hand van rekenresultaten laten we zien hoe verschillende modelpa-
rameters effect hebben op de kwaliteit van het uiteindelijke dienstrooster. De voorgestelde
aanpak is flexibel en makkelijk uit te breiden, omdat het controleren van arbeidstijdenregels
geisoleerd is van het wiskundige algoritme, wat het makkelijk maakt extra arbeidstijdenre-
gels toe te voegen in ons model. Verder stelt het model de gebruiker in staat een afweging
te maken tussen de kwaliteit van het resulterende rooster en de mate waarin de planner in
staat is de beslissingen die genomen worden in het algoritme te volgen.

Conclusies

Dit proefschrift behandelt verschillende personeelplannings- en personeelroosteringstoe-
passingen. Medewerkervoorkeuren zijn hierin een centraal onderwerp. In dit proefschrift
worden verschillende wiskundige uitdagingen geidentificeerd. De belangrijkste uitdaging
zal echter liggen bij het in de praktijk implementeren van besliskundige modellen. Bij het
ontwerp van deze methoden vinden wij het belangrijk dat zij eindgebruikers in staat stellen
deze methoden effectief te gebruiken en de uitkomsten ervan te kunnen sturen. Het on-
derzoek in dit proefschrift is gebaseerd op praktijkcasussen en wij moedigen anderen aan
verder onderzoek in deze richting aan. De mate waarin wiskundige algoritmen om kunnen
gaan met voorkeuren van individuele medewerkers zal bepalend zijn voor het implementa-
tiesucces van deze algoritmen.
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Personnel Preferences in Personnel Planning and Scheduling

The personnel of an organization often has two conflicting goals. ﬂ
Individual employees like to have a good work-life balance, by having % - =
personal preferences taken into account, whereas there is also the e
common goal to work efficiently.

By applying techniques and methods from Operations Research, a subfield of applied mathematics, we show
that operational efficiency can be achieved while taking personnel preferences into account. In the design
of optimization methods, we explicitly consider that these methods should enable the business users to

understand and effectively steer the outcomes of these methods.

Designing such methods, and applying these to personnel scheduling methods is at the core of the research

in this dissertation.
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